

VII SEMESTER B.TECH MAKE-UP EXAMINATIONS, JANUARY 2023 SUBJECT: GRAPHS AND MATRICES [MAT 4054] (PE)

Instructions to Candidates: Answer ALL the questions.		

1A. For every graph G, show that either G or \overline{G} , is connected (3 Marks)

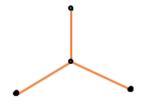
1B. Show that a self-complementary graph has 4n or 4n + 1 points (3 Marks)

1C. Show that a simple graph with n vertices and k components cannot have more than $\frac{(n-k)(n-k+1)}{2}$ lines. Hence deduce that, if $q > \frac{1}{2}(p-1)(p-2)$, then G must be connected (4 Marks)

2A. Let G be (p, q) graph. Show that G is tree if and only if every two points of G are joined by a unique path (**3 Marks**)

2B. For any plane map with p vertices, q edges and r regions, show that p - q + r = 2 (3 Marks)

2C. Obtain the chromatic polynomial of the graph given below.

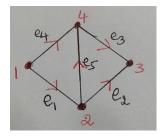


Use the recurrence relation f(G, t) = f(G + e, t) + f(G.e, t) (4 Marks)

3A. Show that if a graph G is Eulerian then G is connected and every point of G is of even degree (**3 Marks**)

3B. For a non-trivial simple (p, q) graph G, show that $\frac{p}{\beta_0} \le \chi(G) \le p - \beta_0 + 1$, β_0 denotes point independence number and $\chi(G)$ denotes the chromatic number (3 Marks)

3C. Consider the graph given below.



By considering the spanning tree formed by $\{e_1, e_2, e_3\}$, find the Moore Penrose inverse of the incidence matrix (5 Marks)

4A. If G is a connected graph on n vertices, show that rank of the $\{0, 1, -1\}$ incidence matrix Q(G) has rank n-1 (2 Marks)

4B. Let G be a bipartite graph with adjacency matrix A. If λ is an eigenvalue of A with multiplicity k, then show that $-\lambda$ is also an eigenvalue of A with multiplicity k (3 Marks) 4C. Let G be a graph with n vertices, m edges and let λ_1 be the largest eigen value of G. Then

show that $\lambda_1 \leq \sqrt{\frac{2m(n-1)}{n}}$ (4 Marks)

5A. Show that eigenvalues of cycle $C_n \operatorname{are} 2\cos\left(\frac{2k\pi}{n}\right)$, n = 1, 2, ..., n (3 Marks)

5B. Let L denote the Laplacian matrix of a simple graph G. Show that L is a symmetric and positive definite matrix (**3 Marks**)

5C. Let G be a simple graph with at least one edge. Let λ_1 be the largest eigenvaluee of the Lapacaian matrix of G. Show that $\lambda_1 \geq \Delta(G) + 1$, where λ_1 denotes the largest eigen value of the Laplacian matrix and $\Delta(G)$ denotes the maximum degree of G (4 Marks)