Marks: 50

A)

Exam Date & Time: 15-Jan-2024 (02:30 PM - 05:30 PM)

MANIPAL ACADEMY OF HIGHER EDUCATION

SEVENTH SEMESTER B.TECH MAKE UP END SEMESTER EXAMINATIONS, JAN 2024

Jet Propulsion and Rocket Technology [MME 4071]

Α

Answer all the questions.

Instructions t	o Candidates: Answer ALL questions Missing data may be suitably assumed
1)	Explain the Thrust Augmentation process using an Afterburner.

(3)

Duration: 180 mins.

- B) A turbojet uses the fuel having calorific value of 44 MJ/kg. The fuel consumption is 0.2 kg per hour per N of thrust, when the thrust is 12 kN. The aircraft velocity is 600 m/s and the mass of air passing through the compressor is 30 kg/s. Calculate the air-fuel (2)ratio and overall efficiency.
- C) In a gas turbine plant, air enters the compressor at 1 bar and 7° C. It is compressed to 4 bar with an isentropic efficiency of 82%. The maximum temperature at the inlet to the turbine is 800° C. The isentropic efficiency of the turbine is 85%. The calorific value of the fuel is 43.1 MJ/kg. The heat losses are 15% of the calorific value. Calculate the following:
 - 1) Compressor work in kJ/kg
 - 2) Heat supplied in kJ/kg
 - 3) Turbine work in kJ/kg
 - 4) Net work in kJ/kg
 - 5) Thermal efficiency
 - 6) Air/Fuel ratio
 - 7) Specific fuel consumption in kg/kW-hr
 - 8) Ratio of compressor work to turbine work
- It is required to install engines to an aircraft running at an altitude where ambient 2) temperature and pressure are 205 K and 11.6 kPa respectively. The 2 possible engines are Turbojet and Ramjet. The Turbojet has a maximum operating temperature of 1400 K with a compression ratio of 12. The maximum operating temperature of Ramjet is A) 2500 K. The aircraft has to run at a speed of Mach 1.5. Considering there are no aerodynamics losses at any component in both the turbojet and ramjet engines (i.e. all components have 100% efficiency), compare the TSFC of both these engines and suggest a suitable engine for the application.

1/3

(5)

(5)

MME 4071

5/24	i, 9:12 AM	MME 4071	
		Assume $P_e = P_a$, $\gamma_a = \gamma_g = 1.4$, $C_{pa} = C_{pg} = 1.0$ kJ/kgK, Heating value of fuel = 45 MJ/kg.	
		Hint: Use $f = \dot{m}_f / \dot{m}_a$ wherever applicable.	
	B)	With a neat sketch, explain the working of a mixed flow turbofan engine.	(3)
	C)	Explain the effects of intercooling in a gas turbine unit.	(2)
3)		A rocket has the following characteristics:	
		Initial mass: 200 kgs	
	A)	Mass after rocket operation: 130 kgs	
		Payload: 110 kgs	
		Operating duration: 3 seconds	(4)
		Average specific impulse of propellant: 240 seconds	
		Determine the propellant mass fraction, propellant flow rate, thrust-to-weight ratio, acceleration of the vehicle, and the total impulse.	
	B)	Using first principles, justify the use of bell-shaped conical nozzles.	(3)
	C)	Explain the 3 modes of expansion in a rocket nozzle.	(3)
4)		With a neat sketch, explain the working of a Staged combustion cycle turbopump feed system. Highlight the differences between staged cycle and gas generator cycle.	(4)
	A) B)	Give the advantages of Hybrid propellant systems.	(2)
	C)	A rocket traverses from 0 to 60 km in altitude. The nozzle is designed for 24 km altitude. The chamber pressure is 12 MPa and $\gamma_g = 1.3$. Area of throat is 0.15 m ² . Determine	
		(i) Nozzle expansion ratio	
		(ii) Nozzle exit area A _e	(4)
		(iii) Optimum thrust coefficient at 24 km altitude	
		Take $T_a = -56.3$ °C and $P_a = 0.029$ bars	
5)		With a neat sketch, explain the working of an Ion propulsion system.	(3)
	A)		. /
	B)	A satellite system is to be designed for space travel to the planet Neptune. Among the	(4)

advanced propulsion techniques of solar sails and Arcjet thrusters, which would be

preferred for a duration of operation of 8 years? Justify your answers.

MME 4071

C) With a neat sketch, explain the working of Solar Sails. What are its limitations?

-----End-----

(3)