

DEPARTMENT OF MECHATRONICS

VII SEMESTER B.TECH. (MECHATRONICS)

END SEMESTER EXAMINATIONS, NOV-2023

SUBJECT: MODELING OF ELECTRIC VEHICLES [MTE 4085]

(30-11-2023)

Time: 3 Hours MAX. MARKS: 50

Instructions to Candidates:

❖ Answer **ALL** the questions.

Q. No		M	СО	PO	LO	BL
1A.	Recognize the type of transmission shown in Fig. 1a and their issues in contrast to the electric vehicle counterpart. Fig. 1a	3	1	1	1	3
1B.	Analyze the modeling approaches with suitable examples.	3	1	5	3	4
1C.	Identify the type of hybrid electric vehicle requiring bulk motor and recognize the pros and cons of the system.	4	1	1	1	3
2A.	Inspect the role of design consideration for dynamic equation in vehicles.	4	2	3	2	4
2B.	Compare the performance of materials used for electric vehicle body.	3	2	6	2	4
2C.	Examine the key consideration for shape of vehicles improving the aerodynamic performance with suitable commercial vehicles available.	3	2	2	2	4
3A.	Model the integro-differential equation of DC excited RLC circuit.	3	2	5	3	3
3B.	Identify the type of motor technology from the efficiency map as shown in Fig. 3b with justification.	2	2	1	1	3

[MTE 4085] Page **1** of **2**

	700 - 600 - 92% 91% 92% 91% 90% 88% 88% 84% 82% 82% Fig 3b. Efficiency Map					
3C.	Examine the impact of higher speed ratio of plant over the lower speed ratio with reference to ideal requirements.	5	2	2	2	4
4A.	Compare the key advantages and disadvantages of reluctance based motors over induction machines and permanent magnet machines.	4	3	2	2	4
4B.	Inspect the control of a 3HP, 1500RPM, separately excited DC Motor for EV. Given: Motor rated voltage is 230V and field voltage of 300V.	3	3	2	2	4
4C.	Analyze the significance of vector control over scalar control with suitable case studies.	3	3	2	2	4
5A.	Examine the driver model and significance of vehicle dynamic controller.	3	3	2	2	4
5B.	Recognize the significance of advanced semiconductor technologies for battery charging systems.	2	4	1	1	3
5C.	Model the power sources for electric vehicle technology.	5	4	5	3	3

[MTE 4085] Page **2** of **2**