DEPARTMENT OF MECHATRONICS ENGINEERING VII SEMESTER B.TECH. (MECHATRONICS) END SEMESTER EXAMINATIONS, December 2023

SUBJECT: SOFT ROBOTICS [MTE 4062]

02/12/2023

Time: 3 Hours MAX. MARKS: 50

Instructions to Candidates:

Answer ALL the questions.

Q. No		M	CO	PO	LO	BL
1A.	With neat diagrams, illustrate the materials used, construction and	5	1	1, 2	1, 2	4
	working principle of PneuNets (pneumatic networks) the bending					
	Actuators.					
1B.	Examine how can existing soft robots be classified based on basic	3	1	1, 2	1, 2	4
	bio-functions learned from creatures, and how does this					
	classification help in applying robots in a targeted way?					
1C.	Analyze have deep-sea creatures like octopuses as to how they have influenced	2	1	1, 2	1, 2	4
	the design of soft robots endowed with mechanical intelligence?					
2A.	Explain the features that represent the model of a mechanical	5	2	1, 2	1, 2	4
	system. Based on these features explain hyper elasticity of soft					
	materials.					
2B.	Illustrate with clear schematic diagrams the tactile sensing strategies which	2	2	1, 2	1, 2	4
	enable soft robots to perform intelligent tasks with feedback in the deep sea?					
2C.	Explain with neat diagrams the working principle, the material	3	2	1, 2	1, 2	4
	used for fabrication for HASEL Artificial Muscles.					
3A.	Illustrate how shape memory alloys (SMAs) work as an actuation mechanism	5	3	1, 2	1, 2	4
	in soft robots, and what are some examples of SMA-based soft robots?					
3B.	Illustrate the edible Actuator for Ingestible Robots.	2	3	1, 2	1, 2	4
3C.	Illustrate with an example of Soft Fluidic Actuation.	3	3	1, 2	1, 2	4

4A.	Discuss the mechanisms and properties of electrically responsive, thermally	5	3	1, 2	1, 2	4
	responsive, magnetically responsive, and photoresponsive actuators used in					
	soft robots?					
4B.	Discuss the different material used for fabricating textile strain sensors along	2	3	1, 2	1, 2	4
	with the working principle.					
4C.	Explain with relevant schematic diagrams the working principle, materials used	3	3	1, 2	1, 2	4
	to fabricate chemical actuators used in soft robots.					
5A.	Compare the different types of materials that can be patterned using ink-based	4	4	1, 2	1, 2	4
	printing methods?					
	How can 3D printing technology be used to produce a robotic hand with bones,					
	ligaments, and tendons?					
5B.	Present a meticulous design of soft robotic locomotion such as	3	4	1, 2	1, 2	4
	locomotion applications including					
	(i) flying,					
	(ii) swimming,					
	(iii) legged locomotion					
5C.	For each locomotion mode mentioned in Q (5B), elaborate on the	3	4	1, 2	1, 2	4
	fundamental aspects of					
	(i) actuation type,					
	(ii) locomotion gaits,					
	(iii) control type					
			l			