Question Paper

Exam Date & Time: 28-Nov-2023 (09:30 AM - 12:30 PM)

MANIPAL ACADEMY OF HIGHER EDUCATION

INTERNATIONAL CENTRE FOR APPLIED SCIENCES END SEMESTER THEORY EXAMINATIONS NOVEMBER/DECEMBER 2023 I SEMESTER BSc(APPLIED SCIENCES) IN ENGG.

MATHEMATICS - 1 [IMA 111]

Marks: 50 Duration: 180 mins.

Answer all the questions.

Missing data, if any, may be suitably assumed

- Verify Cauchy's mean value theorem for the functions $\sin x$ and $\cos x$ in the interval $(\frac{\pi}{6}, \frac{\pi}{3})$.
 - If $u = \log_e\left(\frac{x^4 + y^4}{x + y}\right)$. Show that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = 3$. (3)
 - Evaluate $\lim_{x\to 0} \left(\frac{a^x + b^x + c^x}{3}\right)^{\frac{1}{x}}$ (4)
- If $u = x^2 + y^2 + z^2$ and $x = e^{2t}$, $y = e^{2t} \cos 3t$, $z = e^{2t} \sin 3t$. Find $\frac{du}{dt}$ as the total derivative and verify the result by direct substitution.
 - Find $\frac{ds}{d\theta}$ for the curve $r = a(1 \cos \theta)$.
 - Expand $f(x, y) = \tan^{-1} \left(\frac{y}{x}\right)$ in powers of (x 1) and (y 1) upto second degree terms. (4)
- Show that the tangents drawn at the extremities of any chord of the cardiode $r = a(1 + \cos \theta)$ which passes through the pole are perpendicular to each other.
 - B) If $\cos^{-1}\left(\frac{y}{b}\right) = \log\left(\frac{x}{n}\right)^n$. Prove that $x^2y_{n+2} + (2n+1)xy_{n+1} + 2n^2y_n = 0$.
 - Find the maximum and minimum value of the function $x^3 + y^3 3axy$.
- Find the radius of curvature for the cycloid $x = a(t + \sin t)$, $y = a(1 \cos t)$.

A)

A)

- B) Test for the convergence or divergence of the series $\sum_{n=1}^{\infty} ne^{-n^2}$. (3)
- Test for the convergence or divergence of the series $3x + 3^4x^4 + 3^9x^9 + \cdots \cdot 3^{n^2}x^{n^2} + \cdots$...
- Using reduction formula, Evaluate $\int_{x=0}^{a} x \sqrt{ax x^2} dx$ (3)
 - Find the area of the loop of the curve $ay^2 = x^2(a x)$ (3)
 - Show that evolute of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is $(ax)^{\frac{2}{3}} + (by)^{\frac{2}{3}} = (a^2 b^2)^{\frac{2}{3}}$ (4)

----End----