Question Paper

Exam Date & Time: 13-Jan-2024 (09:30 AM - 12:30 PM)

MANIPAL ACADEMY OF HIGHER EDUCATION

INTERNATIONAL CENTRE FOR APPLIED SCIENCES END SEMESTER THEORY EXAMINATIONS NOVEMBER/DECEMBER 2023 I SEMESTER BSc(APPLIED SCIENCES) IN ENGG.

MATHEMATICS-I [IMA 111 - S2]

Marks: 50 Duration: 180 mins.

Answer all the questions.

Missing data, if any, may be suitably assumed

- Verify Cauchy's mean value theorem for the functions e^x and e^{-x} in the interval (a,b).
 - Show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 2u \log u$ where $\log u = \frac{x^3 + y^3}{3x + 4y}$. (3)
 - Find the value of a and b in order that $\lim_{x\to 0} \frac{x(1+a\cos x)-b\sin x}{x^s}$ is equal to 1.
- 2) If $u = x \log xy$, where $x^3 + y^3 + 3xy = 1$. Find $\frac{du}{dx}$. (3)
 - A)
 B)
 Find $\frac{ds}{d\theta}$ for the curves $x = a(1 \cos \theta), y = a(\theta + \sin \theta)$.
 - Expand $f(x,y) = \tan^{-1}\left(\frac{y}{x}\right)$ in powers of (x-1) and (y-1) upto second degree terms.
- Find the angle of intersection of the cardiode $r=a(1+\cos\theta)$ and $r=b(1-\cos\theta)$.
 - B) If $y = e^{a\sin^{-1}x}$. Prove that $(1 x^2)y_{n+2} (2n+1)xy_{n+1} (n^2 + a^2)y_n = 0$. (3)
 - Find the maximum and minimum value of the function $x^3 + 3xy^2 {4x \over 15x^2 15y^2 + 72x}$.

4)

- A) Find the radius of curvature at the point $(\frac{3a}{2}, \frac{3a}{2})$ of the equation $x^3 + y^3 = 3axy$.
- B) Test for the convergence or divergence of the series $\sum_{n=0}^{\infty} \frac{2n^3+5}{4n^5+1}$.
- Test for the convergence or divergence of the series $x \frac{x^2}{2^2} + \frac{x^3}{3^2} \frac{x^4}{4^2} + \frac{(4)}{3^2} \frac{x^4}{4^2} + \frac{(4)}{3^2}$
- Using reduction formula evaluate $\int_0^1 \frac{x^9}{\sqrt{1-x^2}} dx$.

A)

- Find the area enclosed by the curve $a^2x^2 = y^3(2a y)$. (3)
- Find the equation of the circle of curvature of 2xy + x + y = 4 at the point (1, 1).

-----End-----