Question Paper

Exam Date & Time: 30-Nov-2023 (09:30 AM - 12:30 PM)

MANIPAL ACADEMY OF HIGHER EDUCATION

INTERNATIONAL CENTRE FOR APPLIED SCIENCES END SEMESTER THEORY EXAMINATIONS NOVEMBER/DECEMBER 2023 I SEMESTER B.Sc.(APPLIED SCIENCES) IN ENGG.

PHYSICS - I [IPH 111 - S2]

Duration: 180 mins.

Marks: 50

Answer all the questions.

Missing data, if any, may be suitably assumed

of all principal maxima observed.

Useful constants

Planck's constant h = 6.63 x 10 ⁻³⁴ Js,	Velocity of light c = 3x 10 ⁸ ms ⁻¹ .
Charge on electron = 1.6×10^{-19} C.	Mass of electron = 9.1×10^{-31} kg.
Mass of proton = 1.67×10^{-27} kg.	Boltzmann constant: 1.38 x 10 ⁻²³ J/K
Stefan-Boltzmann Constant: 5.67 x 10 ⁻⁸ W/m ² K ⁴	Avogadro's number : 6.022 × 10 ²³

1) A) B)	Discuss the theory of Newtons rings with a diagram and explain why it is circular and why the center of a Newton's ring is always dark	(5)
	A certain grating has 10^4 slits with a spacing of d = 2100 nm. It is illuminated with vellow sodium light (λ = 589 nm). Find the angular position	(3)

- ^{C)} The electric field in an electromagnetic wave is given by $E = (50 \text{ N/C}) \sin^{(2)} \omega(t x/c)$. Calculate the energy density and also find the energy contained in a cylinder of cross-section 10 cm² and length 50 cm along the x axis.
- ²⁾ What is a quantum particle ? Show that group velocity and particle velocity ⁽⁵⁾ are the same. Also, prove that group velocity and phase velocity are different.
 - ^{B)} A monochromatic source of light operating at 200 W emits 4×16^{0} ⁽³⁾ photons per second. Find the frequency and wavelength of the light.
 - C) X- Rays with wavelength 100 pm are scattered from a carbon target. The ⁽²⁾ scattered radiation is viewed at 90^o to the incident beam. What Kinetic Energy is imparted to the recoiling electron. ?
- ³⁾ By solving the Schrödinger equation, obtain an expression for the

(5)

- A) quantized energy values for a particle of mass m, trapped in an infinite potential well.
- ^{B)} A particle wave function is given by the equation $\psi(x) = A \exp(-ax^2)$. ⁽³⁾ What is the value of A if this wave function is normalized?
- C) Electrons with energy 2 eV are incident on a barrier 10 eV height and 0.5 ⁽²⁾ nm wide. Find the transmission and reflection probabilities.
- ⁴⁾ Discuss the X-Ray spectra by explaining the continuous and characteristic ⁽⁴⁾ X-Rays. What is Cutoff wavelength λ_{min} .
 - A)
 - A three level laser of emits light at a wavelength of 550 nm. What will be (3) the ratio of population at 300 K of the upper level to that of lower level?
 Find, at what temperature the ratio of population would be 0.5
 - C) What are metastable states and population inversion and why they are (3) important in Lasers
- ⁵⁾ Explain with a representative graph, what is superconductivity? Discuss ⁽⁵⁾ Meissner effect with a schematic.
 - ^{B)} A H₂-molecule is in its vibrational and rotational ground states. It absorbs a ⁽³⁾ photon of wavelength 2.2112 µm and jumps to the v = 1, J = 1 energy level. It then drops to the v = 0, J = 2 energy level, while emitting a photon of wavelength 2.4054 µm. Calculate the moment of inertia of the H₂-molecule about an axis through its centre of mass and perpendicular to the H-H bond.
 - C) A quantum state has an energy of 5.3 eV, which is 0.10 eV above the
 Fermi energy. What is the probability that this energy state will be
 occupied? Assume a sample temperature of 750 K.

-----End-----