

| Reg. No. |  |  |  |  |
|----------|--|--|--|--|
|----------|--|--|--|--|

## DEPARTMENT OF SCIENCES I SEMESTER M.Sc. (CHEMISTRY)

## END SEMESTER REGULAR EXAMINATIONS, NOVEMBER & DECEMBER 2023

PHYSICAL CHEMISTRY [CHM 5103]

Time: 3 Hours (CHOICE BASED CREDIT SYSTEM - 2021)

Date: 04/12/2023

MAX. MARKS: 50

|      |                                           | Date: 04/12/2023  | IVIA |
|------|-------------------------------------------|-------------------|------|
| Note | (i) Answer ALL questions                  |                   |      |
|      | (ii) Draw diagrams, and write equations w | herever necessary |      |

| Q. No. | (ii) Diaw diagrams, and write equations wherever necessary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Maules     | 00 | Dr      |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----|---------|
| 1A     | Why is model needed to study the electrified interface, and how did Stern explain this concept using the Helmholt-Perrin and Gouy-Chapman model.                                                                                                                                                                                                                                                                                                                                                                                                                           | Marks<br>4 | 2  | BL<br>6 |
| 1B     | <ul> <li>(i) Using the Debye-Huckel limiting law, calculate the value of γ<sub>±</sub> in 5.0 x 10<sup>-3</sup>M solutions of Ca(NO<sub>3</sub>)<sub>2</sub></li> <li>(ii) Draw a diagram illustrating the conditions under which ion-pair formation is possible and when it is not possible, based on the Bjerrum hypothesis.</li> </ul>                                                                                                                                                                                                                                  | 3          | 2  | 3       |
| 1C     | Explain asymmetric effect and electrophoretic effect found in strong electrolytes and also write the significant of Debye-Huckel Onsager equation.                                                                                                                                                                                                                                                                                                                                                                                                                         | 3          | 2  | -2      |
| 2A     | Describe partially miscible liquid systems involving three components with one pair and two pairs of partially miscible liquids.                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4          | 4  | 6       |
| 2B     | Derive Gibbs-Helmholtz equation and give the applications of it.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3          | 3  | 4       |
| 2C     | <ul> <li>(i) The E.M.F. of the cell Zn/ZnCl<sub>2</sub>:AgCl(s)/Hg involving the cell reaction Zn(s) + 2AgCl(s) Zn<sup>2+</sup> + 2Cl + 2Ag (s) is 1.005 at 298 K.</li> <li>Calculate the heat content change at the given temperature ( <sup>∂E</sup>/<sub>∂T</sub> = -4.0 x 10<sup>-4</sup> and F = 96500 coulombs)</li> <li>(ii) Find the change in melting point per atmosphere change of pressure from the following data  Melting point of Sulphur = 398°K  V<sub>α</sub>-V<sub>β</sub> = 0.0250  ΔH<sub>f</sub> = 9.3 cal/gm dP = 1.013 x 10<sup>6</sup></li> </ul> | 3          | 3  | 3       |
| 3A     | Using the assumptions of absolute reaction rate theory show that exponential factor (pA) does not depend upon activation energy (Ea)                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4          | 1  | 3       |
| 3B     | Explain the electrocapillary action using mercury manometer and how it can be helpful in determining interfacial tension?                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3          | 2  | 4       |
| 3C     | State third law of thermodynamics. Derive the equation for absolute entropies.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3          | 3  | 3       |

| 4A | Write an explanatory note on isothermal explosion during gas phase combustion of hydrogen. Derive rate expression.                | 4 | 1 | 2 1 |
|----|-----------------------------------------------------------------------------------------------------------------------------------|---|---|-----|
| 4B | Explain the influence of solvent dielectric constant on the rate of the reaction                                                  | 3 | 1 | 4   |
| 4C | Using Rice and Herzfeld mechanism, show that thermal decomposition of ethane to ethylene is a first order reaction.               | 3 | 1 | 3   |
| 5A | Explain the Michaelis Menten concept of mechanism for explaining the influence of substrate on the rate of reaction.              | 4 | 1 | 4   |
| 5B | Apply van't Hoff intermediate for general catalytic mechanism and arrive to a rate expression for reaction catalyzed by surfaces. | 3 | 1 | 3   |
| 5C | Derive rate expression for bimolecular surface reaction using Langmuir-Hinshelwood mechanism.                                     | 3 | 1 | 3   |
|    |                                                                                                                                   |   |   |     |

\*\*\*

11.1