

Reg.No.	

DEPARTMENT OF SCIENCES, III SEMESTER M.Sc. (Chemistry) END SEMESTER EXAMINATIONS, DECEMBER 2023 PHYSICAL CHEMISTRY-1 [CHM 5103] (CHOICE BASED CREDIT SYSTEM - 2021)

Time: 3 Hours	Date: DD MM YYYY	MAX. MARKS: 50
Note (i) Answer Al	LL questions grams, and write equations wherever necessary	
1A. Need of model an	nd its explanation	1 Mark
	explanation with graph for stern model	3 Mark
1B. (i) Ca(NO ₃) ₂		
1 = ½ (0.0050 mol	$lkg^{-1} * 2^2 + 2 * 0.0050$) = 0.015 molkg ⁻¹	1 Mark
$Log \gamma_a = -A/Z^+Z^-/$	√I	
= -0.509 *	* 2 * √0.015	1 Mark
= -0.509 *	* 2 * 0.1224	
$\gamma_{\pm} = 0.75$		***
(ii) Ion-pair forms	ation	1/2 Mark
	ation not possible	1/2 Mark
IC. Asymmetric effe		1 Mark
Electrophoretic	effect	1 Mark
It plays a crucia	d role in understanding various electrochemical and chem	ical process, such as ionic conductivity,
chemical equili	brium. Activity coefficients, Ionic strength and ion pairin	g 1 Mark
	ly miscible liquids with explanation, diagram	3 Mark
	lly miscible liquids with explanation, diagram	1 Mark
	ibbs-Helmholtz equation	2 Mark
Application		1 Mark
2C. (i) ΔH = nF[E-7]	$\Gamma\left(\frac{\partial E}{\partial T}\right)_{P}$	1 Mark
= 2 * 965	500 [1.005 -(298) (-4.0 x 10 ⁻⁴)]	
= 2 * 965	500 * 0.8858	
= 170		1 Mark

4A	Write an explanatory note on isothermal explosion during gas phase combustion of hydrogen. Derive rate expression.	4	1	2
4B	Explain the influence of solvent dielectric constant on the rate of the reaction	3	1	4
4C	Using Rice and Herzfeld mechanism, show that thermal decomposition of ethane to ethylene is a first order reaction.	3	1	3
5A	Explain the Michaelis Menten concept of mechanism for explaining the influence of substrate on the rate of reaction.	4	1	4
5B	Apply van't Hoff intermediate for general catalytic mechanism and arrive to a rate expression for reaction catalyzed by surfaces.	3	1	3
5C	Derive rate expression for bimolecular surface reaction using Langmuir- Hinshelwood mechanism.	3	1	3

1).1