

Reg.No.									
---------	--	--	--	--	--	--	--	--	--

DEPARTMENT OF SCIENCES, III SEMESTER M.Sc. (Chemistry) END SEMESTER EXAMINATIONS, NOV/DEC 2023 Green Chemistry [CHM 6006] (CHOICE BASED CREDIT SYSTEM - 2021)

Time: 3 Hours Da	ate: 02-12-2023	MAX. MARKS: 50
------------------	-----------------	----------------

Note: (i)Answer **ALL** questions (ii) Draw diagrams and write equations wherever necessary

	Questions (5+3+2) marks	Marks	CO	BL
1	(a) What are the unique properties and advantages of zeolites? How does a catalyst influence the rate and activation energy of a chemical reaction? Explain the advantages of heterogeneous catalysis over homogeneous catalysis.	5	2	3
	(b) Why CO_2 is predominantly used in supercritical fluid extraction, instead of any other solvents/gases. Explain two industrial applications of supercritical CO_2 ?	3	2	3
	(c) Volatile organic substances in the environment is imposing a great problem to environment and health. As a Green Chemist, briefly discuss possible approaches in combating this problem.	2	2	3
2	(a) How is atom economy different from the yield of a reaction? Rank the following reaction in the order of most atom economical with justification. (i) isomerization of n-butane to isobutane and (ii) reaction of alkene with molecular chlorine.	5	1	4
	Do you consider the utilization of protecting (blocking) groups during the chemical synthesis as a green method or not? Justify your choice.			
	(b) Give any one example of biocatalytic (enzymatic) processes describing the green synthesis of pharmaceuticals.	3	1	4
	Provide green synthesis routes of Adipic acid and Caprolactam.			
	(c) How does olefin hydrogenation on Pt catalyst proceed? Describe the mechanism.	2	1	3

3	(a) Explain any five Green Chemistry principles in detail. Provide example for each principle with a reaction or a process or a method and compare with the conventional methods.	5	1	2
	(b) What are the advantages and disadvantages of using water as a solvent for synthesis?	3	1	4
	The yield of the below-mentioned rearrangement reaction is 100% when carried out in H_2O . But, the same reaction when conducted in D_2O (deuterated water) gives 40% yield. Identify the possible mechanism ("on water" or "in water") and explain reasons for lower yield in D_2O .			
	$\begin{array}{c} HN \\ HN \\ R \\ R \end{array} \xrightarrow{24 h, 80 °C} \\ R \\ R \\ R \\ R \\ R \end{array}$			
	(c) In below mentioned routes A & B to synthesize cylohexanone, which one is the <i>green</i> method & why?	2	1	2
	Route A $H_2CrO_4 \xrightarrow{H_2SO_4} H_2O \xrightarrow{H_2CrO_3 + H_2O}$			
	Route B H + NaOCI H_2O H_2O + NaCl + H_2O			
4	(a) Explain the advantages of using microwaves to realize the reaction over conventional synthesis methods in detail? Mention the safety precautions while executing the microwave-assisted reaction. Why is dimethylformamide (DMF) is considered as the choice of solvent compared to hexane for microwave synthesis. Why microwave reactors are not made of metals?	5	3	3
	(b) What are ionic liquids and mention their applications. In the below reaction to synthesize polyurethanes, comment on the possible approaches to make the reaction greener. RNH_2 + COCl ₂ \longrightarrow RNCO+2HCl $\xrightarrow{R'OH}$ RNHCO ₂ R	3	3	3

	(c) What are the advantages of electrochemical synthesis? Describe the process involved in electrochemical synthesis of Adiponitrile.	2	3	3
5	(a) What are the benefits of using biomass as a feedstock for chemical synthesis? Explain two examples where biomass waste is effectively utilized for synthesizing chemicals or value-added products or pharmaceutical ingredients.	5	2	3
	What is the relationship between the E-factor values and the greenness of a reaction? How do you relate? Explain?			
	(b) Explain the principle involved in ultrasound-assisted green synthesis. What products are formed in the below reactions?	3	2	4
	$\begin{array}{c} & \begin{array}{c} & \\ \hline \\ Br \end{array} \end{array} \xrightarrow{\begin{array}{c} \\ \end{array}} \begin{array}{c} \\ \hline \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \end{array} \end{array} \begin{array}{c} \end{array} \end{array}$			
	$H_2C=CH_2 \xrightarrow{Pd/C, HCO_2H, 20^{\circ}C} \xrightarrow{???} 1 \text{ hour, })))$			
	 (c) Identify and explain the selectivity type involved in the following reactions. Reaction #1 	2	2	4
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
	sel. > 99.8% yield resp. > 90 and 98%	l		
	Reaction #2			
	RuCl ₃ /TPPTS (1:3)			
	$H = 0$ $H_{2}, 20 \text{ bar}$ $H_{2}O / \text{ toluene}$ $H_{2}O / \text{ toluene}$			