

Reg.No.						
---------	--	--	--	--	--	--

DEPARTMENT OF SCIENCES, MIT MANIPAL III SEMESTER M.Sc. (Chemistry) END SEMESTER EXAMINATIONS, Nov-December 2023 Spectroscopy II [CHM 6101] (CHOICE BASED CREDIT SYSTEM - 2020)

Time: 3 Hours

Date: 28/11/2023

MAX. MARKS: 50

Note: (i) Answer ALL questions

(ii) Draw diagrams, and write equations wherever necessary

Q No	Question	Marks	CO	BL
1A	Compare the ¹ H NMR and mass spectra of benzene, chlorobenzene and benzyl chloride	4	4	2
1B	How do non-first order NMR spectra work? Explain about the three techniques for resolving non-first-order spectra.		1	2
a method to obtain P for analysis from the mixture of volatile liquids. IR spectrum of this compound gave a peak at 1725 cm ⁻¹ . Identify the bond responsible for this absorption. The mass spectrum of this compound showed a molecular ion peak at m/z = 150 and a M+2 peak at 152. Suggest why these two peaks appeared and comment on their relative intensity. A base peak appeared at m/z =57. Write the structural formula of this fragment.		2	3	3
2A	Explain the instrumentation of Secondary ion mass spectrometry. Differentiate between hard and soft ionization techniques.		3	2
2B	Describe how chemical exchange affects the ¹ H NMR spectra.	4	1	2
2C	Give reason i) The presence of isotopes affect the mass spectra ii) Strong molecular ion peak is observed in the mass spectra of aryl chlorides but not in aryl iodides		3	3
3A	Compound A has the molecular formula C ₁₀ H ₁₂ O ₂ . The mass spectrum of A contains molecular ion peak at m/z 164. It also has a base peak at m/z 119. The other prominent peaks found are 136, 91 and 65. In its ¹ H NMR spectrum the peaks appeared at δ 7.8 (doublet, peak area 2), 7.3 (doublet, peak area 2), 4.3 (quartet, peak area 2), 2.4 (singlet, peak area 3) and 1.4 (triplet, peak area 3). Deduce the structure of A.		1	3
3B	 (i) Differentiate between ESR and NMR spectroscopic techniques. (ii) Calculate the 'g' value, if the methyl radical shows ESR signal at 33300 G in a spectrometer operating at 9590 MHz (Given: Planck's constant (h) = 6.626×10⁻³⁴ Js Avogadro number (N) = 6.023×10²³ mol⁻¹, Velocity of light (c) = 3×10⁸ m/s) 	4	2	3
3C	Discuss about the various designs of interface between HPLC and MS.	2	3	2

Page 1 of 2

4A	 (i) Predict and describe the proton decoupled ¹³C spectrum of 4-propyloxy-ethylbenzoate (ii) Discuss the various chemical shift ranges for ¹⁹F in common organic environments 	4	1	2
4B	Discuss the Mössbauer spectra of a nucleus with I = ½ in ground state and I = 3/2 in excited state when it has quadrupole interactions and magnetic hyperfine interactions, independently.	4	2	3
4C	Compute the frequency of absorption of the NQR spectrum of ¹⁴ N (I = 1, axially symmetric nucleus). The eigen values of the system are $\mathcal{E}_{n} = \frac{e^{2}qQ[3n_{f}^{2} - I(I+1)]}{4I(2I-1)}$		3	3
5A	Compute the chemical shift values of various carbons in ¹³ C NMR spectra of the following (i) <i>n</i> -heptane 1,3-dihydroxybenzene (incremental shifts for –OH group are +26.6 for ipso, -12.7 for ortho, +1.6 for meta, -7.3 for para substituents)		1	3
5B	Discuss the instrumentation and working of ESR spectrometer.	4	2	2
5C	Illustrate the applications of NQR spectroscopy in determining the Hydrogen bonding interactions	2	3	3

......

Page 2 of 2