

Reg. No.										
----------	--	--	--	--	--	--	--	--	--	--

DEPARTMENT OF SCIENCES III SEMESTER M.Sc. (PHYSICS) END SEMESTER MAKEUP EXAMINATIONS, DECEMBER 2023 PHY6051: FUNDAMENTALS OF ASTRONOMY AND ASTROPHYSICS (OPEN ELECTIVE) (CHOICE BASED CREDIT SYSTEM - 2020)

Time: 3 Hours	Date: 27-12-2023	MAX. MARKS: 50		
Note (i) Answer ALL questions	(ii) Draw diagrams, and write	e equations wherever necessary		
 Useful data: 1 Light year = 9.461 × 10¹² km 1 AU = 1.496 × 10⁸ km = 1.581 × 10⁻⁵ ly 1 parsec = 2.06 × 10⁵ AU = 3.26 light years Stephan-Boltzmann constant = 5.67 × 10⁻⁸ N Wien's constant = 2.9×10⁶ nmK Radius of Sun = 696000 km 	• Luminosity of Su • $G = 6.674 \times 10^{\circ}$ • $k = 1.381 \times 10^{\circ}$ • Mass of Hydroge • Mass of Electron	sity of Sun = 1410 kgm ⁻³ un = 3.846×10^{26} W 0^{-11} Nm ² /kg ² 0^{-23} J/K en atom = 1.67×10^{-27} kg		

<u>Q. No.</u>		<u>Marks</u>	<u>CO</u>	<u>BL</u>
1A	Describe the internal structure of Sun with a neat diagram. Explain the granulation of the photosphere	5	1	2
1B	The radius of a star is 1.5 times that of Sun. If its surface temperature is 9500 K, absolute and apparent magnitudes are +1.4 and -1.5 respectively, find (a) its distance from Earth in light years, (b) its luminosity and (c) stellar parallax produced by the star in arc seconds	3	1	3
1C	Explain how the radial velocity of a star can be determined from stellar spectra	2	1	2
2A	Explain how the energy is produced in stars through p-p chain, CNO cycle and triple alpha process	5	1	2
2B	A neutron star has 1.8 times the solar mass and a radius of about 13 km. If the angular speed of the neutron star is about 2×10^9 times than of Sun, what is the angular momentum of the neutron star in terms of solar angular momentum?	3	1	3
$2\mathrm{C}$	Explain the cosmological principle.	2	2	2
3A	Explain the classification of elliptical and spiral galaxies	3	2	2
3B	Describe the origin of dark matter hypothesis	2	2	2
3C	Describe the design and operation of Newtonian, Cassegrain and Coude type of telescopes with neat diagrams	5	1	2
4A	Why a typical white dwarf has very low opacity to radiation? Explain	3	1	2
4B	How Hubble's law and cosmic background radiation support the big bang theory? Explain	3	2	2
$4\mathrm{C}$	Describe the formation of type I & type II supernovae	4	1	2
5A	Explain the dominant mechanisms of heat transfer in stars	3	1	2
5B	Obtain an expression for electron degeneracy pressure in a white dwarf	4	1	2
5C	Show that the fractional change in the period of a neutron star is equal to twice the fractional change in its radius	3	1	2
