

DEPARTMENT OF SCIENCES, III SEMESTER M. Sc. (Physics) END SEMESTER EXAMINATION, NOVEMBER/DECEMBER 2023 THEORETICAL PHYSICS I [PHY-6005] (CHOICE BASED CREDIT SYSTEM-2020)

Time: 3 Hours Date: 7 December 2023 MAX. MARKS: 50

Note: (i) Answer all questions.

(ii) Answer the questions to the point.

Q. No.		Marks	CO	BL
1.	What do you mean by	2×5		Ι
(i)	crossing symmetry		CO1	
(ii)	asymptotic freedom		CO1	
(iii)	Mott scattering		CO3	
(iv)	charge conjugation		CO1	
(v)	weak interaction		CO1	
2.(i)	How do we measure the helicity of neutrinos experimentally?	5	CO1	Ι
(ii)	Using the Dirac theory prove that electrons have intrinsic spin.	5	CO3	II
3.(i)	Construct the Lie algebra of SU(N) group.	5	CO2	V
(ii)	Find all the irreducible representations	3	CO2	Ι
	of three flavor mesons.			
(iii)	Explain covariant representations.	2	CO2	II
4.(i)	Prove that $S^{\dagger}\gamma^{0}S = \gamma^{0}$, where S is	5	CO3	V
	the Lorentz transformation matrix.			
(ii)	Construct all the billinear covariants with	5	CO3	III
	Dirac spinors.			
5.(i)	Outline the Feynman rules for quantum	5	CO3	II
	electrodynamics.			
(ii)	Draw the Feynman diagrams for e^-e^- scattering.	5	CO3	III
	Write the expression of scattering amplitude			
	by applying the Feynman rules. No need			
	to simplify this expression			