Reg. No.					

MANIPAL INSTITUTE OF TECHNOLOGY

(A constituent unit of MAHE, Manipal 576104)

I SEM M. Tech (MI) DEGREE END SEMESTER EXAMINATIONS, NOV/DEC-2023 SUBJECT: MACHINE LEARNING (BME 5116) (REVISED CREDIT SYSTEM)

Thursday, 30th November, 2023; 9.30 AM- 12.30 PM

TIME: 3 HOURS MAX. MARKS: 50

Instructions to Candidates:

- 1. Answer ALL questions
- 2. Draw diagrams wherever necessary
- 3. Missing data may be suitably assumed
- 1A. How the linear regression method is different from logistic regression? Identify a suitable measure to estimate error during regression analysis and Justify.
- 1B. How Naive Bayesian Theorem can be applied for classification problem? Determine the conditional probability **P(YES/Body_temperature)** from the given details of subjects in table 1(B) for various infection condition. (3)

Table 1 (B) Details of Patient symptoms

Body_temperature (Higher than 100.4 degree)	Shortness of breath	Muscle pain	Loss of taste	Infection Present
Yes	No	Yes	Yes	YES
Yes	No	Yes	No	NO
Yes	Yes	No	Yes	YES
No	No	Yes	Yes	NO
Yes	No	No	No	NO
Yes	No	Yes	Yes	YES
No	Yes	Yes	No	NO
No	No	Yes	No	NO
Yes	Yes	No	Yes	YES
Yes	Yes	Yes	Yes	YES

1C. Estimate the value of $\mathbf{p}(\mathbf{X}/\mathbf{A})$ using matrix method; where $\mathbf{X} = [15 \ 35]^{\mathrm{T}}$; from the normally distributed classes A and B. The class features x and y are normally distributed and details are as follows:

Class A:
$$P(A)=0.6$$
, $\mu x=9$, $\sigma x=2$, $\mu y=25$, $\sigma y=3$, $\rho xy=0.5$
Class B: $P(B)=0.4$, $\mu x=18$, $\sigma x=2$, $\mu y=45$, $\sigma y=4$, $\rho xy=0.5$

Visualize the **Class A** and interpret it.

- 2A. Develop an algorithm for solving classification problems with the concept of decision tree utilizing entropy/ information gain. (3)
- 2B. Determine the information *gain* utilizing the details from table 2B, consisting of symptoms of women suspected with *Gestational Diabetes* and identify the root node attribute for building the decision tree. (3)

BME 5116 1 | 3

D N.					
Reg. No.					

Table 2B. Details of subjects

Frequent	Blurred Weakness		Gestational
Urination	Vision		Diabetes
Yes	Yes	Yes	Yes
Yes	No	Yes	No
Yes	Yes	No	Yes
No	No	Yes	No
Yes	No	No	No
Yes	Yes	No	Yes
No	Yes	Yes	No
Yes	Yes	Yes	Yes

- 2C. Develop an algorithm to describe workflow of a perception, and illustrate the usage of weight updating rules for training the network. (4)
- 3A Identify the challenges associated in the design of image-based classification system for pathology application. Illustrate this by considering a case study.
- 3B. Explain identification of a support vectors in a given sample space. Illustrate the importance of them for building a machine learning model.
- 3C. Discuss the principal components and its usage in the development of ML models. (3)
- 4A. Identify one of top-down clustering methods, and apply it on the following 5 subjects to generate 3 clusters: (10, 14), (11,19), (12,18), (27,29), (30,32). Finally find centroids of generated clusters.
- 4B. Illustrate the stacking concept with an example, to improve the overall performance of a machine learning model.
- 4C Design a workflow for analyzing the machine learning model for finding the abnormality with cardiac condition utilizing the ECG and heart rate variation. (3)
- 5A. Compare different machine learning methods. Justify that the explainability of a model are important today. (3)
- Design a perceptron network to classify the two-dimensional input patterns "C" and "T". The symbol "*" indicates the data representation to be "+1" and "•" indicate data to be "-1". Consider a target of "+1" for pattern C and "-1" for pattern T.

BME 5116 2 | 3

Reg. No.					
O					

5C. Analyze significance of accuracy, sensitivity, and specificity as performance parameters. (4) Calculate the accuracy, sensitivity and specificity from the confusion matrix given:

Table 5 (B) Confusion matrix

		Predicted of model	lasses by ML
		Positive	Negative
Actual Class	Positive	1250	40
	Negative	60	1150

BME 5116 3 | 3