Reg. No.										
----------	--	--	--	--	--	--	--	--	--	--

MANIPAL INSTITUTE OF TECHNOLOGY

(A constituent unit of MAHE, Manipal 576104)

aid in diagnosis and clinical interpretation.

I SEM M.Tech (MI) DEGREE END-SEMESTER EXAMINATIONS, NOV/DEC 2023 SUBJECT: MEDICAL INFOORMATION ANALYSIS (BME 5117) (REVISED CREDIT SYSTEM) Saturday, 02nd December, 2023, 9:30 AM to 12:30 PM

TIME. 2 HOUDS

MAY MADES. 50

(3M)

1 1191	E. 3	HOURS MAA, MA	IKIK 5. 50				
Instructions to Candidates:							
1. Ai 2. Di	nswe raw l	r ALL questions. abeled diagram wherever necessary					
1.	a)	Explain the significance of EEG frequency bands in the analysis of brain activity.	(2M)				
	b)	Explain each operation performed on the sequences $x(n) = \begin{cases} n & -3 \le n \le 3 \\ 0 & otherwise \end{cases}$ to represent	$(2\mathbf{M})$				

- the resultant sequence y(n) = x(-2n + 1)c) Determine the typical normal ranges and units of representation for ECG, EEG, EMG, EDA, and speech signals. Highlight how deviations from normal ranges can (5M)
- 2. a) Consider the FIR High pass filter defined by the system function $H(z) = \frac{1}{2}(1 - z^{-1})$. (2M)Determine the characteristics of the system from its magnitude and phase spectrum.
 - Propose an optimal filter to remove the stationary interference present in the b) (4M) Biomedical signals.
 - Design an IIR digital Low Pass filter for the specifications as shown in Figure 1 by c) transforming an analog Low Pass filter using Bilinear transformation. Consider (4M) analog Butterworth Low pass filter design for the given specifications.

- 3. a) Consider the IIR Low pass filter defined by the system function $H(z) = \frac{1-\alpha}{2} \frac{1+z^{-1}}{1-\alpha z^{-1}}$. (2M) Design the filter for the $\frac{\pi}{4}$ radians/sample cut off frequency.
 - b) Draw a block diagram representing various steps in the Pan-Tompkins method to detect QRS complex in ECG signals. Explain the purpose and nature of each step in the procedure. (3M)
 - c) Determine the length of the shortest path from (i) (1, 1) to (3, 4) (ii) (1, 6) to (3, 2) using (a) 4-connectivity and (b) 8-connectivity (5M)
- 4. a) Illustrate what causes ringing artefact in frequency domain filtering. How do you prevent the artefact? (3M)
 - b) A 2x2 image has the pixel values $\begin{bmatrix} 6 & 7 \\ 3 & 9 \end{bmatrix}$. Compute parallel-ray projections of the image at 0° and 45° (2M)
 - c) The 5×5 image

is processed by two systems in cascade.

The first system produces the output $g_1(m,n) = f(m,n) - f(m-1,n)$. The second system produces the output $g_2(m,n) = g_1(m,n) - g_1(m-1,n)$. Compute the images g_1 and g_2 . Explain the effects of two operators.

- 5. a) Justify how does a set of projections at different viewing angles relate to the Fourier transform of an object (2M)
 - b) Illustrate the steps of computation required in order to perform Low pass filtering of an image in the frequency domain by using the Fourier transform. (3M)
 - c) Filter the following image using a 3x3 neighborhood averaging filter by assuming zero padding

5	6	3	2
4	5	5	1
1	2	6	3
2	6	4	7

(5M)