Reg. No.

I SEMESTER M.TECH. END SEMESTER EXAMINATIONS

SUBJECT: ADVANCED REACTION ENGINEERING [CHE 5115] (05/12/2023)

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

- Answer ALL the questions.
- Missing data may be suitable assumed.

	Predict the possible conversion employing the Tank in series model.														
	t, s	0	5	10	20	30	40	50	60	70	80	90	100		
	C _{pulse} , mg/lt	0	0.6	1.3	1.5	1.7	3.9	2.7	1.6	1.4	1	0.5	0		
1B.	Mention any two important assumptions proposed under Langmuir adsorption isotherm.														
2A.	Find an interim rate expression for the following catalytic reaction when adsorption is controlling. $A \rightarrow B$. Assume inhibition to be an added resistance.														06
2B.	Visualize and describe the possible steps that could be involved in the kinetics of a trickle bed reactor.														04
3A.	Provide reasoning and model an equation to obtain the surface area of a solid.														06
3B.	Explain the interphase behavior for gas-liquid contact system.														04
4A.	With a neat sketch, relate time and conversion for a constant sized spherical particle, when the controlling resistance is gas film.														06
4B.	What is	What is effectiveness factor? Obtain a relationship for a 1st order reaction.													
5A.	Explain		detail	the k	inetic	s of	a Slu	irry r	eacto	and	how	the	different	resistances are	06
	Qualitatively and quantitatively, assess the Segregation model.													04	