| Reg. No. |  |  |
|----------|--|--|
|          |  |  |



## MANIPAL INSTITUTE OF TECHNOLOGY

MANIPAL

(A constituent unit of MAHE, Manipal)

## I SEMESTER M.TECH. (CHEMICAL ENGINEERING) END SEMESTER EXAMINATIONS, NOV/DEC 2023

SUBJECT: PROCESS DESIGN OF CHEMICAL EQUIPMENT [CHE 5117]

## REVISED CREDIT SYSTEM (09/12/2023)

Time: 3 Hours

MAX. MARKS: 50

## Instructions to Candidates:

Answer ALL the questions.

Missing data may be suitably assumed.

The use of data sheets is allowed in the examinations.

| 1.A. | A vapour mixture of 20% methane (1), 30% ethane (2) and 50% propane (3) at constant temperature of 30°C is available. Evaluate the dew point pressure and the composition of the first drop of condensate formed. (Use K-factor chart)               | 5 |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 1.B  | Estimate the gas phase diffusivity of carbon dioxide ( $CO_2$ ) in air at 20°C and atmospheric pressure. $D_v = \frac{1.013 \times 10^{-7} T^{1.75} \left(\frac{1}{M_a} + \frac{1}{M_b}\right)^{1/2}}{P[(\sum_a v_i)^{1/3} + (\sum_b v_i)^{1/3}]^2}$ |   |
|      | D <sub>v</sub> diffusivity, m <sup>2</sup> /s, T temperature, K  Ma and Mb molecular weight of components a and b,                                                                                                                                   | 5 |
|      | P is total pressure, bar                                                                                                                                                                                                                             |   |
| -    | $(\sum_a v_i)$ and $(\sum_b v_i)$ are summation of special diffusion volume coefficients for components a and b                                                                                                                                      |   |

| 2.   | Diethyl ether vapour at a rate of 5 chilled water at 20°C and the wat of the horizontal condenser. Calc diameter of the shell. The physical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | er may be heated up to<br>ulate the heat transfer                                                                                                      | 80°C. Design the required size area, number of tubes and      |   |  |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|---|--|
|      | below.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                        | TRIVER STATE                                                  |   |  |
|      | Properties of fluid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Diethyl ether                                                                                                                                          | Water                                                         |   |  |
|      | Specific heat, J/kg K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1980.45                                                                                                                                                | 4187                                                          |   |  |
|      | Density, kg/m <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 708                                                                                                                                                    | 988.03                                                        |   |  |
|      | Thermal conductivity, W/mK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.1350                                                                                                                                                 | 0.6284                                                        |   |  |
|      | Viscosity, kg/ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0.13 \times 10^{-3}$                                                                                                                                  | $0.59 \times 10^{-3}$                                         |   |  |
|      | in triangular pitch. The number of The heat transfer coefficient for the hoo in the hoo | he horizontal condense                                                                                                                                 | er is given as                                                |   |  |
| 3.A. | For the heat exchanger condenser problem (question number 2), calculate the pressure drop on both the sides.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                        |                                                               |   |  |
| 3.B. | Explain the various factors (any three) to be considered while allocating fluids in the inside pipe and annulus side of the double pipe heat exchanger.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                        |                                                               | 3 |  |
| 3.C. | Explain with the diagrams, how the rate varies with respect to the nun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                        |                                                               | 3 |  |
| 4.A. | A Swenson Walker crystallizer is solution from 27°C to 17°C with t leaves at 17°C. The solution contakg of Na <sub>2</sub> SO <sub>4</sub> / 100 kg of water at molecular weight of Na <sub>2</sub> SO <sub>4</sub> is 12 Heat capacity of the solution is 2. The heat of the solution: -13.31 Assume U= 520 W/m <sup>2</sup> K Calculate the area of the crystalliz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | the help of cooling wat<br>lins 40 kg of Na <sub>2</sub> SO <sub>4</sub> /<br>17°C. The feed enters<br>0.<br>93 kJ/kg K<br>× 10 <sup>3</sup> kJ/kg mol | ter which enters at 8°C and<br>100 kg of water at 27°C and 14 | 8 |  |
| 4.B. | Explain the terms: bone dry mater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                        | ure                                                           | 2 |  |

A binary mixture of methanol (30% by weight) and ethanol (70% by weight) is to be separated by fractionation to obtain 95% purity of methanol by weight in the distillate and 95% purity of ethanol by weight in the bottom product. The feed is a saturated vapour. For the equilibrium data calculations, consider the arithmetic average of relative volatility value.

Molecular weight of methanol is 32

Molecular weight of ethanol is 46

Relative volatility  $\alpha$  is defined as vapour pressure of more volatile component to vapour pressure of less volatile component.

| Temperature, °C | 64  | 67  | 70  | 73   | 76   | 78   |
|-----------------|-----|-----|-----|------|------|------|
| Methanol, mm Hg | 760 | 820 | 920 | 1020 | 1150 | 1260 |
| Ethanol, mm Hg  | 420 | 430 | 470 | 610  | 690  | 760  |

The system follows Raoult's law and the vapour pressure data are available.

Calculate the number of theoretical plates required for the distillation column.

10