Reg	۱.	Ν	0

I SEMESTER M.TECH. (ENVIRONMENTAL ENGINEERING)

END SEMESTER EXAMINATIONS, 2023-24

SUBJECT: ADVANCED TREATMENT OF WATER AND WASTEWATER [CIE – 5118] REVISED CREDIT SYSTEM

(/ /2023)

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

• Answer **ALL** the questions.

✤ Missing data, if any, may be suitably assumed.

Q No					Marks	СО	вт
1A	Discuss the tests used for measuring the organic content of a water sample and elaborate on the calculation of TOC and ThOD, providing an illustrative example.					CO1	3
1B	Illustrate the treatment of municipal wastewater having high levels of suspended solids, organic matter and herbicides using a flow chart.			05	CO2	3	
2A	Determine the BOD ₁ and ultimate BOD of a wastewater whose BOD ₅ at 20°C is 200 mg/l. The reaction rate constant k (base e) is equal to $0.23d^{-1}$ and $\Theta = 1.047$. Also find BOD ₅ of sample at 25°C.			05	CO2	3	
2B	Design a rectangular sedimentation tank for treating sewage from a city having maximum daily water demand of 8 MLD. Assume a detention time of 1.5 hours, SOR as $40 \text{ m}^3/\text{m}^2/\text{d}$ and horizontal flow velocity as 0.22 m/minutes. Assume 85% of water supplied will become sewage. Calculate weir loading rate.		05	CO3	4		
3A	A single stage trickling filter is designed for an organic loading of 10,000 kg of BOD in raw sewage per hectare metre per day with a recirculation		05	CO3	4		
3B		hickener for an haracteristics. Primary sludge 1.03 3.2 250	STP having the for Activated sludge 1.004 0.23 2500	Combined sludge	05	CO3	4
4A				hambers using clear	05	CO3	3

4B	Describe the working of an activated sludge process with a neat sketch. Also discuss the major design and operational parameters of ASP	05	CO4	3
5A	Illustrate biological phosphrous removal in wastewater treatment plant using a neat sketch.	05	CO5	3
5B	Explain with the neat sketch the modified solids flux analysis method used for the design of secondary clarifier	05	CO5	3