Reg. No.

Time: 3 Hours

MANIPAL INSTITUTE OF TECHNOLOGY

(A constituent unit of MAHE, Manipal)

FIRST SEMESTER M.TECH. STRUCTURAL ENGINEERING)

END SEMESTER EXAMINATIONS, JANUARY 2023

OPTIMIZATION TECHNIQUES [MAT 5154]

REVISED CREDIT SYSTEM

Date: 07 January 2023

Instructi	ions to Can	didates:							
*	• Answer A	LL the questi	ons.						
•	 Missing d 	ata may be su	itably assume	ed.					
Q.NO	Questions						Marks	СО	BTL
1A.	Use three-point interval search to approximate the location of the							CO1	2
	global min	3							
1B.	Solve the quadratic programming problem							CO1	3
	Max Z = 2	$20x_1 - 20x_1^2 + $							
	subject to	$x_1 + x_2 \le 0, x$	3						
1C.	The manager of an oil refinery has to decide upon the optimal mix of two possible blending process of which the inputs and outputs per production run are as follows:							CO2	2
	Input Output								
	Process	Crude A	Crude B	Gasoline X	Gas	oline Y			
		5	5	5		8			
	The maxim 150 units of units of ga profits per and Rs. 50 programm	num amounts respectively. N soline X and 8 production r respectively. ing model and	4						
2A.	Fit a curve method of	of the form <i>y</i> group averag 250 5	$= ax^b + c \text{ fo}$ es. $00 900$	r the following	g data, 1600	by the 2000	2	CO4	2
	<u>y</u>	0.25 0.	.38 0.8	1.38	2.56	4.1			
2B.	Reduce the matrix $\begin{pmatrix} 4 & 2 & 2 \\ 2 & 5 & 1 \\ 2 & 1 & 6 \end{pmatrix}$ to tridiagonal and find all the eigenvalues of the same.							CO3	2
2C.	Solve the nonlinear programming problem $Max \ z = 6x_1 + 8x_2 - x_1^2 - x_2^2$ subject to the constraints $4x_1 + 3x_2 = 16$ $3x_1 + 5x_2 = 15$ with x_1 re non negative						4	CO1	3

Max. Marks: 50

3A.	Show by simplex method that the linear programming problem $Max Z = 5x_1 + 4x_2$ subject to the constraint $x_1 \le 7, x_1 - x_2 \le 8, x_1, x_2 \ge 0$ has an unbounded solution.	2	CO2	3
	Use Fibonacci search method to approximate the global minimum			
3B.			CO1	2
	of $x + \frac{4}{x}$ on (0, 2] with in $\in = 0.2$.	3		
3C.	Find the optimal solution to dual of		CO2	2
	$Min Z = 3x_1 + 3x_2$ subject to			
	$2x_1 + 4x_2 \ge 40, 3x_1 + 2x_2 \ge 50, x_1, x_2 \ge 0.$			
		4		
4A.	Find the smallest eigenvalue of matrix by power method. $ \begin{pmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{pmatrix} $		CO3	3
	Carry out four iterations by taking $(1, 1, 1)^{'}$ as the initial vector.	3		
1 B	Solve by two-phase method		<u> </u>	2
D.	$Max Z = 5x_1 + 3x_2$ subject to the constraint		02	5
	$2x_1 + x_2 \le 1, x_1 + 4x_2 \ge 6, x_1, x_2 \ge 0.$	3		
4C.	Solve by dual simplex method $Max Z = -3x_1 - 2x_2$ subject to the constraints		CO2	4
	$x_1 + x_2 \ge 1, x_1 + x_2 \le 7, x_1 + 2x_2 \ge 10, x_2 \le 3$			
	with $x_1, x_2 \ge 0$.	4		
5A.	Solve by Big-M method		CO1	4
	$Max Z = 5x_1 - 2x_2 + 3x_3$ subject to the constraints			-
	$2x_1 + 2x_2 - x_2 > 2 \cdot 3x_1 - 4x_2 < 3 \cdot x_2 + 3x_2 < 5$			
	$x_1, x_2, x_3 \ge 0.$	5		
5B.	Solve the LDD by cimpley method		CO1	4
	Solve the LPP by simplex method $Max Z = 4x_1 + 10x_2$			-
	subject to $2\pi + \pi = 10.2\pi + 5\pi = 20.2\pi + 2\pi = 10.2\pi + 5.0$			
	a. Indicate that this problem has an alternate optimal basic			
	feasible solution and find that optimal solution.			
	b. Hence show that this problem has multiple optimal			
	solutions.	_		
		5		