Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY

MANIPAL (*A constituent unit of MAHE, Manipal*)

I SEMESTER M.TECH. (STRUCTURAL ENGINEERING) END SEMESTER EXAMINATIONS, DECEMBER 2023

SUBJECT: STRUCTURAL DYNAMICS (CIE - 5129)

REVISED CREDIT SYSTEM (7/12/2023)

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

- ✤ Answer ALL the questions.
- ✤ Missing data may be suitably assumed.

O No	Question	М	CO	PO	BTI
1 A .	The column of Fig. Q1A is to be treated as a SDOF system by defining its	141	C01	1,3,4,5	5
	displaced shape $\psi(x) = \frac{V(x,t)}{Z(t)} = \frac{x}{L} \left(\frac{5}{2} - \frac{2x}{L}\right)$. Denoting the uniform	-			
	distributed mass per length by \overline{m} , the uniform stiffness by EI and the uniform	5			
	distributed load per unit length by $\overline{p}(t)$, evaluate the generalized physical				
	properties m, k and the generalized loading p (t).				
1B.	Formulate the expression for free vibration response of over damped SDOF		CO2	1,3,4,5	5
	system. Take the initial boundary condition as, at $t = 0$, $V(t) = V_o$ and	5			
	$\dot{v}(t) = \dot{v}_{o}$				
2A.	Define Dynamic magnification factor. Formulate an expression for β at which		CO2	1,3,4,5	5
	the maximum amplitude occurs in the case of under damped SDOF system	5			
	subjected to harmonic loading. Also assess the maximum Dynamic				
	magnification factor.				
2B.	A machine weighing 900 N is supported on springs of total stiffness 850		CO2	1,3,4,5	5
	N/mm. Imbalance results in a disturbing force of 400 N at a speed of 3400	5			
	rpm. Damping is estimated at 10% of critical value. Assess				
	i) The amplitude of motion				
	ii) Transmissibility				
	iii) Transmitted force				

Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY

MANIPAL (A constituent unit of MAHE, Manipal)

	Using Trapezoidal's rule for numerical evaluations of Duhamel's integral		CO3	1,3,4,5	5
3A.	Asses the dynamic response of SDOF system subjected to a blast loading	5			
	shown in Fig. Q3A. The physical properties are $W = 30$ kN and $K = 3000$				
	kN/m. Take $\Delta \tau = 0.1$ sec.				
3В.	Using modified Rayleigh's method assess the fundamental frequency of the		CO4		
	system shown in Fig. Q3B. Take $K_1 = 1500$ kN/m, $K_2 = 1000$ kN/m,	5			
	$K_3 = 500 \ k\text{N/m}, \ m_1 = 2500 \ k\text{g}, \ m_2 = 1500 \ k\text{g} \ \text{and} \ m_3 = 500 \ k\text{g}.$				
4A.	For the three storey shear building shown in Fig. Q4A, Assess the natural		CO4	1,3,4,5	5
	frequencies and the modes of vibration. Use classical method. Take,	7			
	$K_1 = 1400 \ kN/m, K_2 = 2100 \ kN/m, K_3 = 2800 \ kN/m, m_1 = 4000 \ kg,$	1			
	m_2 = 4000 kg and m_3 = 6000 kg				
4B.	Explain orthogonality relationship	3	CO4	1,3,4,5	2
	A cantilever beam supporting three equal lumped masses is shown in		CO4	1,3,4,5	
	Fig.Q5A. Its undamped mode shapes ϕ and frequencies of vibration ω are				
	shown below. Formulate an expression for the dynamic response of this				
	system after a 30 kN step function load is applied at mass point 2. Include				
5A.	effect of all three modes and neglect damping. Take $m = 300$ kg.	F			
		ວ			
	$\begin{pmatrix} 1 & 1 & 1 \end{pmatrix}$ $\begin{pmatrix} 4 \end{pmatrix}$				
	$\phi = 0.7 - 0.3 - 1.6$ $\omega = 12$ rad/sec				
	$\begin{pmatrix} 0.4 & -0.6 & 1.2 \end{pmatrix}$ 20				
5B.	Treating the simply supported beam of uniform cross section as continuous		CO5	1,3,4,5	5
	systems Formulate the expression for the vibration frequency and mode	5			
	shapes				

Fis. QIA

