	MANIPAL ACADEMY of HIGHER EDUCATION
NSPIRED BY UN	(Institution of Eminence Deemed to be University)

Reg.No.									
---------	--	--	--	--	--	--	--	--	--

M.Tech. I SEMESTER (CSE) END SEMESTER EXAMINATIONS, JANUARY 2023 Computational Methods and Stochastic Processes [MAT 5152]

Time: 3 Hours

Date: 10 01 2023

MAX. MARKS: 50

Note (i) Answer ALL questions

(ii) Draw diagrams, and write equations wherever necessary

		Marks	CO	BL
1A	B_1 B_2 B_3 B_4 B_5	3	1	2
	Find the value of the game $A_1 - 4 + 2 + 5 - 6 + 6$.			
	$A_2 3 -9 7 4 8$			
1B	Two players A and B will simultaneously place a coin on the table. If the coins `match' (both heads), then player A is paid Rs 8 by player B. If the coins `match' (both tails), then player A is paid Rs 1 by player B. If the coins do not `match', then player B is paid Rs 3 by player A. Given the choice of player A or player B, which one would you choose?	3	1	3
1C	Using Simplex method, solve the LPP $\max z = 3x_1 + 2x_2$ subject to the	4	1	3
	constraints $2x_1 + x_2 \le 18$, $2x_1 + 3x_2 \le 42$, $3x_1 + x_2 \le 24$ and $x_1 \ge 0$, $x_2 \ge 0$.			

.....

		Marks	CO	BL
2A	The joint probability function for two discrete random variables X and Y is	3	2	3
	given by $f(x, y) = \begin{cases} c(2x + y) & 0 \le x \le 2; \ 0 \le y \le 2 \\ 0 & \text{otherwise} \end{cases}$, where x and y can			
	assume only integral values. Compute the value of c and find the $COV(X, Y)$.			
2B	Let \overline{X} denote the mean of the random sample of size 100 drawn from a	4	2	5
	distribution with mean 50 and variance 100. Compute $P(49 < \overline{X} < 51)$. It is			
	given that $P(Z \le 1) = 0.8413$, where Z denotes the standard normal variate.			
2C	Consider the process $X(t) = A \cos wt + B \sin wt$, where A, B are uncorrelated	3	3	3
	random variables each with mean 0 and variance 1 and w is a positive			
	constant. Show that the process $X(t)$ is covariance stationary.			

••••••	•••••			
	Marks	CO	BL	1

		mains	00	
3A	A student's study habits are as follows: If he studies one night, he is 30%	3	3	5
	sure to study next night. On the other hand, if he does not study one night, he			
	is 40% sure to study next night. Compute fixed probability vector, to know			
	how often he studies in the long run.			
3B	Find the nature of the states in a 3-state process whose one-step transition	3	3	4
	matrix is $P = \begin{pmatrix} 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \\ 1/2 & 0 & 1/2 \end{pmatrix}$.			
	matrix is $P = \begin{pmatrix} 0 & 1 & 0 \end{pmatrix}$.			
	$(1/2 \ 0 \ 1/2)$			
3C	Obtain the singular value decomposition of the matrix $A = \begin{pmatrix} 2 & 2 \\ 1 & 1 \end{pmatrix}$.	4	4	4
	$\int \frac{1}{1} \int \frac{1}{1} \frac{1}{1}$			

		Marks	CO	BL
4A	Diagonalize the matrix $B = \begin{pmatrix} -4 & -6 \\ 3 & 5 \end{pmatrix}$.	4	4	2
4B	Obtain the QR decomposition of the matrix $A = \begin{pmatrix} 1 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$.	3	4	4
4C	Five defective LED bulbs are accidently gotten mixed with 20 good ones. It is not possible to just look at a bulb and tell whether it is defective or not. Determine the probability distribution of the number of defective bulbs if four bulbs are drawn at random from this lot.	3	2	5

.

		Marks	CO	BL
5A	Using Dijkstra's algorithm find the shortest path from the node A to every other node in the following weighted graph	3	5	4
5B	Using finite difference method, solve the elliptic equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ for $0 < x < 1$ and $0 < y < 1$ under the condition $u(x, 0) = u(0, y) = 0$, $u(1, y) = 9(y - y^2)$, $u(x, 1) = 9(x - x^2)$ by taking $h = 1/2$.	3	6	4
5C	Using finite difference method, solve the hyperbolic equation $\frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 u}{\partial y^2}$ taking	4	6	4
	h = 1 and $k = 1/4$ upto $t = 5/4$. The boundary conditions $u(0, t) = u(5, t) = 0$		Ŭ	
	$0, u_t(x, 0) = 0, \text{ and } u(x, 0) = x^2(5 - x).$			