Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY

(A constituent unit of MAHE, Manipal)

I SEMESTER M. TECH (POWER ELECTRONICS & DRIVES)

END SEMESTER EXAMINATIONS, NOVEMBER- DECEMBER 2023

POWER ELECTRONIC CONVERTER [ELE 5113]

REVISED CREDIT SYSTEM

Time	: 3 Hours	Date: 02 DECEMBER 2023	Max. Marks: 50
Instru	ictions to Candidates:		
	 Answer ALL the question 		
	 Missing data may be sui 	itably assumed.	
1A.		eries connected SCRs are subjected during their dynamic conditions.	to unequal (04)
1B.	-	ance of a safe operating area of po g behavior of power <i>IGBT</i> .	wer IGBT? <i>(04)</i>
1C.	Why is it necessary switching?	y to use fast-recovery diodes for I	nigh-speed (02)
2A.	Switches T1 and T2 given pulses at even and T4 are removed analyze the output v	-phase full wave converter with resi are given pulses at every α , and T3 are given pulses at every α , and T3 are given by the pulse and T1 and T3 are given by the pulse output current, and voltage derive the output voltage.	and T4 are rives of T3 ulses. Now
2B.	is 5% of the rate	ted with a 5kW power and the source ed voltage and the rated volt Ar mutation angle and $\frac{Vd}{Vd0}$ with the relow Fig.Q.no.2B.	mp.10KVA.
		Vs=230V, 50Hz i ₈₁ i ₈	

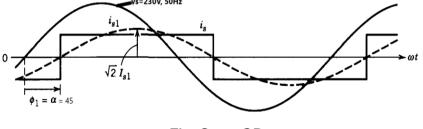


Fig.Q.no.2B.

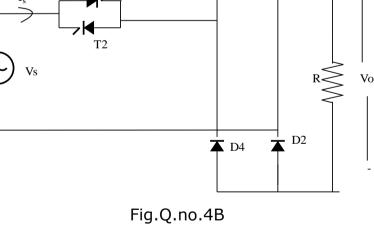
- (03)
- 2C. A single-phase half-controlled converter is used to control the power of 1000 watts heater. The source voltage is 230V,50Hz. Determine the heater power for a firing angle of 45°.

(03)

4C.

- 3A. Three phase full converter fed from a 3-phase, 400V, 50Hz source, is connected to a separately excited DC motor. The armature resistance is 10Ω and back emf is 300V, and large inductance so that the output current is ripple-free. Determine the power delivered to load and input power factor for firing angle $\alpha = 30^{\circ}$. (04)
- 3B. In the full-bridge DC-AC converter circuit, the source voltage is 350V, $m_a=0.8$, $m_f=31$ and the fundamental frequency is 50Hz. Calculate the RMS values of the fundamental frequency voltage and the same of the dominant harmonics in the output voltage, if a PWM bipolar voltage switch scheme is used. Plot its harmonic spectrum. Refer the Table 1: Generalized Harmonics of V_{A0} for Large m_f of Q.no.3B.
- 3C. A single-phase bridge-type cyclo converter feeds a resistive load. For an output frequency equal to one-third of the input frequency, analyze output voltage waveform for a firing angle of about 30°. Assume continuous load current
- 4A. Analyze the output voltage harmonics spectrum analysis of pulse width modulated switching scheme of a single-leg switch-mode inverter.
- 4B. Analyze the waveforms for two cycles of supply voltage, supply current, load voltage, and load current for a firing angle of about 45° for the two thyristors, as shown below in Fig.Q.no.4B, and also derive the average output voltage.

T1


used in medium power applications.

(03)

(04)

5A. Discuss the working of a load-commutated chopper. Derive an expression from which the value of the commutating capacitor of this chopper can be computed. (03)

T D3

D1

(03)

(02)

(04)

- 5B. Analyze the output voltage and current waveform of a two-quadrant type B chopper supplying a separately excited DC motor. Consider T_{on} is less than T_{off} .
- 5C. Explain the working of the three-phase square wave inverter controlled by 120° mode of operation. Analyze the phase and line voltage waveforms.

 m_a 0.2 0.4 0.6 0.8 1.0 h 0.2 1 0.4 0.6 0.8 1.0 Fundamental 1.242 I.15 1.006 0.818 0.601 m_{f} 0.318 $m_f \pm 2$ 0,016 0.061 0.131 0.220 $m_f \pm 4$ 0.018 $2m_f \pm 1$ 0.190 0.326 0.370 0.314 0.181 $2m_{f} \pm 3$ 0.024 0.071 0.139 0.212 $2m_{f} \pm 5$ 0.033 0.013 0.335 0.083 0.171 0.113 3mr 0.123 $3m_{f} \pm 2$ 0.044 0.139 0.203 0.176 0.062 $3m_f \pm 4$ 0.012 0.047 0.104 0.157 $3m_f \pm 6$ 0.016 0.044 $4m_{f} \pm 1$ 0.068 0.163 0.157 800.0 0.105 $4m_{f} \pm 3$ 0.012 0.070 0.132 0.115 0.009 $4m_{f} \pm 5$ 0.034 0.084 0.119 $4m_{f} \pm 7$ 0.017 0.050

Table 1: Generalized Harmonics of VAO for Large mf

Page	3	of 3	
Iuge	J	0,5	

Generalized Harmonics of v_{Ao} for a Large m_f .

(04)