Reg. No.

(A constituent unit of MAHE, Manipal)

REDRY

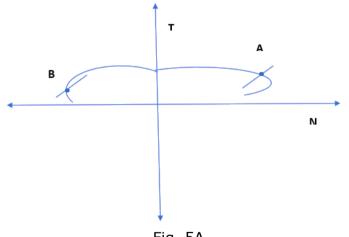
DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING I SEMESTER M.TECH. (POWER ELECTRONICS & DRIVES) END SEMESTER EXAMINATIONS, DECEMBER 2023

POWER SEMICONDUCTOR CONTROL DRIVES [ELE 5114]

Time:	3 Hours	Date: 05 December 2023	Max. Marks: 50
Instru	ctions to Candidates:		
	 Answer ALL the q 	-	
	 Missing data may 		
	Sine Graph sheet	may be used.	
1A.	rated speed till ra control you prefe	ncy drive system needs to be operated more ted speed. Which control strategy out of V/f r for this application? Justify your answer w and characteristics.	control or E/f
1B.	industrial AC driv	Why vector control has become a popular approach for speed control in industrial AC drives? Explain the concept of indirect vector control using suitable block diagram representations. (04)	
1C.	seperately excited converter is suppl angle required to	Consider a three phase fully controlled rectifier fed 220V,10A, 1100 rpm seperately excited DC motor. The motor has armarure resistance of 1Ω . The converter is supplied with 415V three-phase AC supply. Calculate, the firing angle required to develop 12Nm braking torque at rated speed. Assume that, enough filter inductance is added to ensure continuous	
2A	A drive system moment of inertia The speed of the	has an equivalent load torque of 52Nm at a of 1.1kgm ² , and running at a steady spee motor need to be changed from 800rpm to 3 in 2 seconds. What should be the total t motor?	ed of 800rpm. 500rpm in the
2B.	and inductance of single phase fully 50Hz at firing an ensured at this f	B A separately excited motor has the armatus 12Ω and 18 mH, respectively. The motor is controlled rectifier with an ac source voltagle $a=30$ degrees. Is a continuous armatus firing angle at rated speed? Derive the avanverter & draw the waveforms of armature se.	ontrolled by a age of 230V, ure current is verage output
	separately excited		
	$i_{(\omega t)} = \frac{V_m}{Z} \left[\sin(\omega t - \omega t) \right]$	$(\varphi) - \sin(\alpha - \varphi)e^{((\alpha - \omega t)/\omega \tau)} - \frac{k\omega_m}{R_a} \left[1 - e^{((\alpha - \omega t)/\omega \tau)}\right]$	^{;)}]) (06)
20		ich is an antion an alson D is fradius haal. 1	-

2C. A DC chopper which is operating as class B is feeding back 1.1kW of power to DC source of 240V from a separately excited DC machine operating with 11Nm torque. Machine constant is 1.2 V/(rad/sec). Calculate the duty cycle at which chopper is operating.

(02)


- **3A.** Analyse the waveforms of armature voltage and current of a $3-\Phi$ fully controlled rectifier fed DC drive with $a = 75^{\circ}$. Clearly show the triggerring sequence. Derive the expression for average output voltage. Assume discontinuous conduction.
- **3B** An industrial AC drive require speed control in the range of 75% to full rated speed, without much power loss. Out of stator voltage control & rotor resistance control, which one you suggest? Justify your answer with the help of suitable schematic diagrams and characteristics
- **3C.** Compare the converter output voltages of a class A & class B chopper fed DC drives, fed with 220V DC supply. Assume the duty cycle of power semiconductor switch is 40% in both cases. Comment on the results obtained.
- 4A. Will a 10kW motor be a suitable choice for the following drive system? A drive system has two loads. One has rotational motion. It is coupled to the motor through a reduction gear with gear ratio 0.2 and efficiency 80%. The load has a torque of 8 Nm. Also note that the gearbox has a load torque of 1NM referred to motor shaft.

Other 10N load has translational motion at a uniform speed of 1.5 m/s. The coupling between motor and the translational load has an efficiency of 85%. The motor runs at a constant speed of 1420rpm.

- **4B.** A three-phase induction motor-based AC drive system is designed to apply slip power recovery scheme for its speed control in the sub-synchronous speed range. Draw the schematic diagram of such a system and explain the principle behind it. Can this be modified to work in super synchronous speed range? If 'Yes' explain the method. If 'No' explain the reason.
- **4C.** Is flux weakening mode of control suitable for constant power drives? Justify your answer with suitable characteristics & block schematics.
- **5A.** Analyze the steady state stability of operating points **A** & **B** in Fig. 5A.

- Fig. 5A
- **5B.** An industrial drive requires controlled motoring and re-generative braking mode of operation with bidirectional voltage input. Suggest a suitable chopper circuit for this application. Analyze its braking mode of operation with the help of output voltage, current and source current waveforms of the converter.
- **5C.** A reluctance motor needs to be selected to drive a robotic arm which require a smooth torque. Which type of reluctance motor will you select? Justify your choice. Also explain the fundamental difference in construction & working of different types of reluctance motors.

(04)

(04)

(02)

(04)

(03)

(03)

(02)

(04)