

I SEMESTER M. TECH (EMBEDDED CONTROL AND AUTOMATION) **END SEMESTER EXAMINATION DECEMBER 2023 Advanced Control Theory (ICE 5114)**

Note: Ano -41

Tin	Note: Answer All questions. ne:3 Hours 02-12-2023	MA	X. MAR	KS: 50	
	Instructions to Candidates:				
	✤ Answer ALL the auestions.				
Q. No.	Description	М	со	РО	BL
1A	Illustrate correlation between transient response and frequency response by deriving relationship between damping ratio and phase margin considering a general second order system.	3M	1	1-4	3
1B	Derive an expression for (i) frequency at which maximum phase lead occur, (ii) maximum phase lead and (iii) the gain at this frequency of a Lead compensator.	3M	1	1-4	3
1C	A unity feedback system with $G(s) = \frac{K}{s(s+7)}$ is operating at 15% overshoot. Design a Lag compensator using root Locus technique to yield Kv=50, without altering transient performance characteristics.	4M	1	1-4	5
2A	Compare the performance of PI and PD controllers. How are they tuned using Ziegler Nichols first Method.	3M	2	1-4	2
2B	Given K _p =0.45 K _{cr} and T _I = P _{cr} /1.2. Determing PI contoller transfer function for the system whose closed loop transfer function $\frac{Y(s)}{R(s)} = \frac{K}{s^3 + 10s^2 + 16s + K}$. Use Zigler-Nicholas tuning method 2.	3M	2	1-4	3
2C	$K_1 \qquad \qquad$	4M	2	1-4	4

Obtain the state model of the mechanical system shown in Figure, considering motion of Mass M₁ as output.

3A	Determine the transfer function of the system	3M	2	1-4	3
	$\dot{X} = \begin{bmatrix} -6 & -1 \\ 5 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u; y = x_1.$				
	Compare eigen values and poles of the transfer function. Comment				
	on stability of the system.				
3B	Given $A = \begin{bmatrix} -3 & 2 \\ 0 & 1 \end{bmatrix}$, determine state transition matrix using Cayley-	3M	2	1-4	2
3C	Hamilton theorem Determine the response of the system i) starting from initial	4M	3	1-4	3
	condition $\begin{bmatrix} 1\\ 0 \end{bmatrix}$ with no input. Also determine unit step response with		•		•
	507				
	$B = \begin{bmatrix} 0\\1 \end{bmatrix}.$	_	_		_
4A	Obtain the discrete time equivalent of the continuous time system described by Q3B and Q3C, choosing a sampling time of T=0.2 s.	3M	3	1-4	3
4B	Consider the system $G(s) = \frac{s^2 - 1}{(s-1)(s^2 + 4s + 2)}$, determine whether the	3M	3	1-4	4
	system is completely state controllable. Obtain a minimal realization				
	of the system in state variable form.				
4C	Given the system equation	4M	3	1-4	5
	$\dot{X} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} X + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u; y = \begin{bmatrix} 2 & -1 \end{bmatrix} X$				
	Design a state feedback gain matrix K to place the closed loop poles at -2 and -3. Use Ackerman's formula.				
5A	Derive an expression for state transition matrix of a discrete time system by considering homogeneous system described by X(+1)=FX(k)	3M	4	1-4	3
5B	Consider a discrete time state equation described by	5M	4	1-4	3
	$X(k+1) = \begin{bmatrix} 0 & 1 \\ -1 & -2 \end{bmatrix} X(k) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} (-1)^k; y(k) = \begin{bmatrix} -1 & 1 \end{bmatrix} u(k)$				
	And X(0)= $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Find closed form of solution for Y(k).				
5C	Explain with neat block diagram a typical digitally controlled system. Also mention the advantages of discrete system analysis.	2M	4	1-4	2