| Reg. No. |  |  |  |  |  |
|----------|--|--|--|--|--|



## DEPARTMENT OF MECHATRONICS II SEMESTER M.TECH. (Industrial Automation and Robotics) END SEMESTER EXAMINATIONS, DECEMBER 2023 SUBJECT: FLUID POWER SYSTEMS [MTE 5115] (Date: 9/12/2023)

Time: 3 Hours MAX. MARKS: 50

## **Instructions for the Candidates:**

- ❖ Answer **ALL** questions.
- ❖ Data did not provide any, may be suitably assumed.

| Q. No |                                                                                | M | СО | РО  | LO    | BL |
|-------|--------------------------------------------------------------------------------|---|----|-----|-------|----|
| 1A    | Compare the hydraulic & pneumatic control system with 8 different factors      | 4 | 1  | 2,4 | 1,2,5 | 4  |
| 1B    | Explain the working of air lubricator with the help of neat diagram            | 3 | 1  | 1,2 | 1,2   | 2  |
| 1C    | Describe the working of optical sensor used for position sensing               | 3 | 1  | 1,2 | 1,2   | 2  |
| 2A    | Illustrate the working of counter balance valve                                | 4 | 2  | 1,2 | 1,2   | 2  |
| 2B    | Describe the working of vane pump with neat diagram                            | 3 | 2  | 1,2 | 1,2   | 2  |
| 2C    | Develop the hydraulic circuit for illustrating the use of accumulator as an    | 3 | 2  | 1,2 | 1,2,5 | 4  |
|       | auxiliary power source for completing the cycle of operation                   |   |    |     |       |    |
| 3A    | Describe the working of electrical type limit switch with neat diagram         | 3 | 2  | 1,2 | 1,2   | 2  |
| 3B    | Apply the cascade method for elimination of signal overlap for obtaining       | 4 | 3  | 1,2 | 1,2,5 | 4  |
|       | the sequence A+B+B-A- in pneumatic control system                              |   |    |     |       |    |
| 3C    | The double acting hydraulic cylinder has to extend rapidly for stamping        | 3 | 3  | 2,4 | 1,2,5 | 4  |
|       | application in the sheet metal industry. The cylinder has to return            |   |    |     |       |    |
|       | automatically after stamping. Using regenerative fluid method, design the      |   |    |     |       |    |
|       | electro-hydraulic circuit. Make suitable assumptions for the controls.         |   |    |     |       |    |
| 4A    | An electrically heated welding rail is pressed onto a rotatable cold drum by   | 4 | 3  | 2,4 | 1,2,5 | 4  |
|       | a double acting cylinder and welds a continuous plastic sheet into pieces of   |   |    |     |       |    |
|       | tubing. The forward stroke is triggered by means of a push button. The         |   |    |     |       |    |
|       | maximum cylinder force is set at 5 bar via a pressure regulator with pressure  |   |    |     |       |    |
|       | gauge to prevent the welding rail damaging the metal drum. The return          |   |    |     |       |    |
|       | stroke is not initiated until the forward end position has been acknowledged   |   |    |     |       |    |
|       | and the pressure in the piston area has reached 3 bar. The supply air is       |   |    |     |       |    |
|       | restricted for the movement of the cylinder. Restarting is only possible       |   |    |     |       |    |
|       | when the retracted end position has been reached and a time of $t = 2$ seconds |   |    |     |       |    |

[MTE 5115] Page 1 of 2

|    | has elapsed. Reversing a 5/2 way valve with selector switch causes the               |   |   |     |       |   |
|----|--------------------------------------------------------------------------------------|---|---|-----|-------|---|
|    | control to be switched to continuous cycle. Design the pneumatic control             |   |   |     |       |   |
|    | system for this application.                                                         |   |   |     |       |   |
|    | Fig. 4A Heating drum                                                                 |   |   |     |       |   |
| 4B | Using a cutting device sheets of paper are to be cut to size. By pressing two        |   |   |     | 1,2,5 | 4 |
|    | push button switches the cutting blade is advanced and the sheet of paper            |   |   |     |       |   |
|    | is cut. After releasing one pushbutton switch the cutting blade is returned          |   |   |     |       |   |
|    | to its start position. Design the electro-pneumatic control circuit for this         |   |   |     |       |   |
|    | application in the paper industry.                                                   |   |   |     |       |   |
|    |                                                                                      |   |   |     |       |   |
|    | Fig. 4B Paper Cutting Machine                                                        |   |   |     |       |   |
| 4C | Design the electro-hydraulic circuit to regulate the cylinder speed through          | 3 | 3 | 2,4 | 1,2,5 | 4 |
|    | meter out/exhaust throttling flow regulation during the return movement of           |   |   |     |       |   |
|    | double acting cylinder.                                                              |   |   |     |       |   |
| 5A | Describe the construction and working of unloading valve and also design             | 4 | 4 | 2,4 | 1,2,5 | 3 |
|    | the hydraulic circuit to demonstrate the use of this valve for unloading the         |   |   |     |       |   |
|    | fluid flow from high flow and low pressure pump when the dual pumps (the             |   |   |     |       |   |
|    | high flow and low pressure pump, the low flow and high pressure pump)                |   |   |     |       |   |
|    | are used in the hydraulic circuit.                                                   | 2 | 4 | 2.4 | 1.2.5 | 2 |
| 5B | Compare the proportional valves with traditional direction control valves            | 3 | 4 | 2,4 | 1,2,5 | 3 |
| 5C | A cylinder with a bore diameter of 50 mm and a rod diameter of 20 mm is              | 3 | 5 | 1,2 | 1,2,5 | 3 |
|    | to be used in a system with a maximum pressure of 15,000 kPa. Determine              |   |   |     |       |   |
|    | the maximum extension and retraction forces? For this system, what effect            |   |   |     |       |   |
|    | would be doubling the bore diameter have on the output force generated on extension? |   |   |     |       |   |

[MTE 5115] Page 2 of 2