|--|

MANIPAL INSTITUTE OF TECHNOLOGY

(A constituent unit of MAHE, Manipal)

DEPARTMENT OF MECHATRONICS

I SEMESTER M.TECH. INDUSTRIAL AUTOMATION AND ROBOTICS

END SEMESTER EXAMINATION, NOVEMBER 2023

SUBJECT: ROBOT KINEMATICS AND DYNAMICS [MTE 5113]

Time: 3 hours

Date: 05/12/2023

Max. Marks: 50

	Instructions to Candidates:						
 Answer ALL the questions. Missing data may be suitably assumed and justified. 							
Q. No	PROBLEM STATEMENT	Μ	CO	PO	LO	BL	
1A.	Formulate the relation to invert homogeneous transform from frame $\{1\}$ to frame $\{2\}$ with a suitable diagram.	5	1	1,3	1,2	5	
1B.	Apply DH convention for evaluating the forward kinematics of the RPR manipulator shown in Fig.Q1B Identify the Frame assignment, DH tables and all respective transformation matrices? $f(d_2, d_2, d_3, d_4)$ Fig. O1B	5	2	1,3	1,2	5	
2A.	$ \begin{array}{l} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c$	5	2	1,3	1,2	5	

2 B .	Construct the frame assignment and DH table of the 5-DOF industrial manipulator shown in Fig. O2B using D-H method.	5	2	1,3	1,2	3
	Fig. O2B					
3A.	Determine the new location of the hand after the differential motion, if hand	5	3	1,3	1,2	5
	frame of 2RP2R manipulator its numerical Jacobian (J) for this instance, and a set of differential motions are given.					
	$T_{6} = \begin{bmatrix} 1 & 0 & 0 & 5 \\ 0 & 0 & -1 & 3 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix} J = \begin{bmatrix} 3 & 0 & 0 & 0 & 0 \\ -2 & 0 & 1 & 0 & 0 \\ 0 & 4 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ -1 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} d\theta_{1} \\ d\theta_{2} \\ ds_{1} \\ d\theta_{4} \\ d\theta_{5} \end{bmatrix} = \begin{bmatrix} 0.1 \\ -0.1 \\ 0.05 \\ 0.1 \\ 0 \end{bmatrix}$					
3B.	Determine the jacobian matrix for the 3-DOF robotic arm. The transformation matrix is given below.	5	3	1,3	1,2	5
	${}^{0}T_{1} = \begin{bmatrix} C_{1} & 0 & -S_{1} & 0 \\ S_{1} & 0 & C_{1} & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} {}^{1}T_{2} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix} {}^{2}T_{3} = \begin{bmatrix} C_{3} & 0 & S_{3} & L_{3}C_{3} \\ S_{3} & 0 & -C_{3} & L_{3}S_{3} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ Where, $Cos(\theta_{1}) = C_{1} Sin(\theta_{1}) = S_{1}$ $Cos(\theta_{3}) = C_{3} Sin(\theta_{3}) = S_{3}$					

4A.	Develop equation of motion of 2-degree of freedom manipulator shown in Fig. Q4A using Euler-Lagrangian method. Estimate the total kinetic energy of the manipulator. $y \rightarrow 0$ $y \rightarrow 0$	5	3	1,3	1,2	5
4B.	Develop equation of motion of 2-DOF manipulator, link 1 and link 2 are making joint angle from horizontal axis using Euler-Lagrangian method. The center of mass for each link is at the center. The mass of the link 1 and link 2 are m_1 and m_2 , length of link 1 and link 2 are L_1 and L_2 , joint angles are θ_1 and θ_2 moment of inertia are I_1 and I_2 respectively. Determine the total potential energy of the manipulator.	5	3	1,3	1,2	5
5A.	Using a fifth-order polynomial, determine the joint angle at 1, 2, 3, and 4 seconds, if the first joint of a 6-axis robot go from initial angle of 30° to a final angle of 75° in 5 seconds. Assume the initial acceleration and final deceleration will be 5° /Sec ² .	5	4	1,3	1,2	5
5B.	Formulate the equations of third-order polynomial joint space trajectory planning.	3	4	1,3	1,2	5
5C.	Determine the new position of vector P, if vector $P = 3i - 2j + 5k$ is first rotated by 90° about y-axis, then by 90° about x-axis, then it is translated by $-3i + 2j - 5k$.	2	1	1,3	1,2	5