Question Paper

Exam Date & Time: 01-Dec-2023 (10:00 AM - 01:00 PM)

MANIPAL ACADEMY OF HIGHER EDUCATION

Manipal School of Information Sciences (MSIS), Manipal First Semester Master of Engineering - ME (VLSI Design) Degree Examination - November / December 2023

Data Structures [VLS 5101]

Marks: 100

Duration: 180 mins.

Friday, December 1, 2023

Answer all the questions.

- ¹⁾ Define data structure. Explain time complexity and space complexity with ⁽¹⁰⁾ an example. Illustrate space complexity for a recursive and non-recursive function. (APPLY, CO1) (1+4+5 =10 marks)
- Design data structure for Pixel data in a single linked list. Write function to (10) insert and delete element in O(1) time. (Note: Each Pixel will consist of RGB value, opacity, brightness etc) (APPLY, CO2)(2+4+4)
- ³⁾ Define Stack data structure. List applications of Stack. Provide data ⁽¹⁰⁾ structure for array based Stack. Implement push() and pop() functions. (APPLY, CO2) (1+1+2+3+3 marks)
- ⁴⁾ Design data structure for linked list based Queue Write functions to create ⁽¹⁰⁾ new queue, add to queue and delete from queue. (APPLY, CO2)(2+2+3+3 marks)
- ⁵⁾ Q5 A. List the properties of binary search tree. Define data structure for ⁽¹⁰⁾ binary search tree. (APPLY, CO2) (4 Marks)

Q5 B. (ANALYZE, CO2) (1.5x4 = 6)

Index Order of Insertion	Key/ Data
1	11
2	9
3	6
4	17
5	8
6	22
7	15
8	6
9	0
10	53
11	9
12	3

Lable L

- a. Create a binary search tree (BST) from the Table 1.
- b. Delete key 9 from BST and display the BST.
- c. Insert key 10 and 7 to the BST and display the BST.
- d. Find the height of the BST? In which level key 10 is present in the BST.
- 6) Define hashing. With an example explain closed hashing. Explain any two ⁽¹⁰⁾ techniques to overcome collision problem. Define data structure to store integer values in hash table of size 10 and a function to initialize the hash table. (APPLY, CO4) (1+2+2+5 marks)
- 7) Implement a sorting technique that works on $O(N^2)$ in worst case and O(N) ⁽¹⁰⁾ in best case . Illustrate with an example. (APPLY, CO3) (6+4 marks)
- 8) Define Minimum Spanning Tree. Write a pseudo code for Prims's algorithm ⁽¹⁰⁾ to find Minimum Spanning Tree. Illustrate with an example by considering a graph with 6 vertices. (APPLY, CO4) (2+4+4 marks)
- 9) Write a program to traverse a given graph. Illustrate the code by using a (10)graph with 5 vertices. (APPLY, CO4) (5+5 marks)
- 10) (10)Given two linked list A and B, Create linked list C = A intersection B. Define the data structure for the following problem and write the function List * intersection(List *, List *). Note: Assume List * Initialize list() and List * insert at end(List *, int) are implemented. (APPLY, CO2) (2+8 marks)

-----Fnd-----