Question Paper

Exam Date & Time: 30-Apr-2024 (09:30 AM - 12:30 PM)

MANIPAL ACADEMY OF HIGHER EDUCATION

SECOND SEMESTER B.TECH. EXAMINATIONS - APRIL / MAY 2024 SUBJECT: MAT 1271/MAT_1271 - ENGINEERING MATHEMATICS - II (CHEMISTRY GROUP)

Marks: 50 Duration: 180 mins.

Answer all the questions.

Determine the minimum value of x^2yz^3 subjected to the condition 2x + y + 3z = 3. (4)

If
$$z = 4x - y^2$$
 where $x = uv^2$ and $y = u^3v$ then find $\frac{\partial z}{\partial u}$ and $\frac{\partial z}{\partial v}$.

If
$$u = \cos^{-1}\left(\frac{x+y}{\sqrt{x}+\sqrt{y}}\right)$$
, then prove that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = -\frac{1}{2}\cot u$. (3)

Show that the plane x + 2y - z = 3 cuts the sphere $x^2 + y^2 + z^2 - x - z - 2 = 0$ in a circle of radius unity. Furthermore, find the equation of the sphere which has this circle as a great circle.

Expand $f(x, y) = e^x log(1 + y)$ in powers of x and y up to the 3rd degree terms. (3)

Evaluate
$$\lim_{x\to 0} \left(\frac{a^x + b^x + c^x}{3}\right)^{1/x}$$
. (3)

Test the convergence of the series (4)

$$\frac{2^2}{3^2} + \frac{2^2 \cdot 4^2}{3^2 \cdot 5^2} + \frac{2^2 \cdot 4^2 \cdot 6^2}{3^2 \cdot 5^2 \cdot 7^2} + \cdots$$

Evaluate $\int_0^a \int_y^a \frac{x}{x^2 + y^2} dy dx$ by changing to polar coordinates. (3)

Use double integration to find the area lying inside the cardioid (3)

 $r = 2(1 + \cos\theta)$ and outside the circle r = 2.

Using Laplace transforms, solve the differential equation $\frac{d^2y}{dt^2} - 3\frac{dy}{dt} + 2y = 1 - e^{2t}$ (4) subject to the conditions y(0) = 1 and y'(0) = 0.

4B) Evaluate
$$L^{-1}\left(\frac{2s+1}{(s-1)^2(s+2)^2}\right)$$
. (3)

- Express the function $f(t) = \begin{cases} t-1; & 1 < t < 2 \\ 3-t; & 2 < t < 3 \end{cases}$ in terms of unit step function and hence find $L\{f(t)\}$.
- Test the absolute and conditional convergence of the following series (4)

$$x - \frac{x^2}{\sqrt{3}} + \frac{x^3}{\sqrt{5}} - \cdots$$

- Using triple integrals, find the volume bounded by the cylinder $x^2 + y^2 = 4$ and (3) the planes y + z = 3 and z = 0.

-----Fnd-----