MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL (A constituent unit of MAHE, Manipal)

IV SEMESTER B.TECH. (AUTOMOBILE ENGINEERING) END SEMESTER EXAMINATIONS, APRIL/MAY 2024 SUBJECT: AUTOMOTIVE COMPONENT DESIGN [AAE -2226] REVISED CREDIT SYSTEM

(03/05/2024)

Time: 3 Hours

MAX. MARKS: 50

Q No	Question	Marks	CO attained	BT level
1A	State any 6 criteria that a machine element should satisfy as the basic requirement from machine design perspective	2	1	2
1B	Explain the phenomenon of fatigue failure, also explain how the failure is different from static load failure	3	1	2
1C	A solid circular shaft of diameter 45 mm is loaded by bending moment 650 Nm, torque 900 Nm and an axial tensile force of 30 kN. The shaft material is ductile with yield strength of 280 MPa. Determine the factor of safety according to Tresca's and Von Mises' theory of failure	5	1	3
2A	A close coiled helical spring is subjected to a load of 800 N and deflects by 40 mm. The diameter of each coil is 10 times that of wire and the maximum shear stress is not to exceed 350 MPa. Take $G = 84$ GPa. Design the spring, by calculating the wire diameter, Inner & Outer diameters, no. of turns, and the total length of the spring	4	2	3
2B	From the previous question data, calculate the pitch and stiffness of the spring	2	2	3
2C	Design the truck spring that has 12 number of leaves, two of which are full length leaves. The spring supports are 1 m apart and the central band is 70 mm wide. The central load is to be 6 kN with a permissible stress of 200 MPa. Determine the thickness, width and deflection of the spring leaves when i) the leaves are not pre-stressed ii) the leaves are pre-stressed, Consider the ratio of total depth to width of the spring as 3 for both the cases, $E = 2 \times 10^5 \text{ N/mm}^2$	4	2	3

3A	A pair of spur rotating at 10 rotate at 310 rp 20° full depth pinion is stee static stress 20 for the gear is allowable stat Determine the Take service N/mm ²	gears has to t 00 rpm to a pm. Number of involute too el SAE 1040 06.81 MPa (Bl is cast Steel fic stress 13' e module, fac factor as 1.5	5	3	3		
3B	For the data fro dynamic load, the error	om the previo state the class	3	3	3		
3C	From the data limiting wear l	from the prev oad on the too	2	3	3		
4A	Select a suitable 1500 rpm, and 5000 N thrust steady and the diameter, from the life expectat Bearing No. Bore (mm) C ₀ (N) C (N)	le ball bearing is acted upon load. The inne service is com strength cons ancy is 500 hr 6209 45 17750 24910	g which is to o by 8000 N ra er ring rotates, ttinuous. The s sideration, is 4 s. 6309 45 29225 40700	perate at dial load and the load is shaft 5 mm, and 6409 45 45600 57400	4	4	3
4B	From the prev select a suita consideration	vious question ble bearing	3	4	3		
4C	State the five distinct forms of lubrication and explain any one					4	2
5A	Select & Designed be driven by a and runs at 12 is 60 rpm. The mild shock. Of calculation of strands	gn a roller ch a gear motor. 0 rpm. The s e elevator ope Consider a fa working loa	4	5	3		
5B	For the data in length in pitche diameters of th	previous ques es, actual cent ne sprockets	3	5	3		
5C	Explain the phenomenon of creep in a belt drive with the necessary diagram					5	2