Question Paper

Exam Date & Time: 14-Jun-2024 (02:30 PM - 05:30 PM)

MANIPAL ACADEMY OF HIGHER EDUCATION

IV Semester MakeUp End Semester Examination

ENGINEERING MATHEMATICS - IV [MAT 2223]

Marks: 50

Duration: 180 mins.

Descriptive Questions

Answer all the questions.

Section Duration: 180 mins

- A bag contains 3 coins, one of which is two headed, while the other 2 coins are normal and not

 (3)

 biased. A coin is chosen at random from the bag and tossed 4 times in succession. If head turns up each time, what is the probability that it is a two headed coin?
 - Show that for the normal distribution with mean μ and variance σ^2 , (3) $E(X-\mu)^{2n} = \sigma^{2n}(1.3.5...(2n-1)).$
 - Suppose the two-dimensional random variable (X, Y) has the joint probability density function (4) given by $f(x,y) = \begin{cases} k(1-x-y), & x>0, y>0, x+y<1\\ 0, & otherwise \end{cases}$
 - i. Find the value of K.
 - ii. Determine the marginal density function of X and Y.
- 2) If X_1 , X_2 , X_3 are uncorrelated random variables having same standard deviation, find the correlation coefficient between $X_1 + X_2$ and $X_2 + X_3$.

Find (i) a. P(X < 4) b. $P(X \ge 5)$ c. $P(3 < X \le 6)$

- (ii) What is the minimum value of k, so that $P(X \le 2) > 0.3$.
- C) In a normal distribution, 31% of the items are under 45 and 8% are over 64. Find the mean (4) and variance of the distribution.

3)

A) Let
$$\chi$$
 be a random variable with probability distribution $f(\chi) = \frac{1}{\pi(1+\chi^2)}$ for $-\infty < \chi < \infty$. Then find the pdf of $\gamma = \frac{1}{\chi}$.

- Suppose that the two-dimensional random variable (X, Y) is uniformly distributed over the triangular region $R = \{(x, y) | 0 < x < y < 1\}$. Find its pdf and marginal pdf of X and Y.
- There are 2 white marbles in box A and B red marbles in box B. At each step of the process a marble is selected from each box and the two marbles selected are interchanged. Let the state a_i of the system be the number i of red marbles in box A.
 - i. Find the transition matrix.
 - ii. What is the probability that there are 2 red marbles in box A after 3 steps.

4) Solve by graphical method Minimize
$$Z = 40x_1 + 30x_2$$
 subject to (3)
$$200x_1 + 100x_2 \ge 4000, \ x_1 + 2x_2 \ge 50, 40x_1 + 40x_2 \ge 1400, \ x_1, x_2 \ge 0.$$

- B) Iterate three steps for minimum of $f(x) = 5x_1^2 + x_2^2$ starting from $x_0 = (1,2)$ using steepest descent method.
- C) Find the solution using Simplex method (4) $\text{Maximize } Z = 5x_1 + 3x_2 \text{ subject to}$ $x_1 + x_2 \leq 2, \quad 5x_1 + 2x_2 \leq 10, \quad 3x_1 + 8x_2 \leq 12, \quad x_1, x_2 \geq 0.$
- Find the value of constant (a + b + c) so that the directional derivative of the function

 (3) $f = axy^2 + byz + cz^2x^3$ at the point (1, 2, -1) has maximum magnitude 64 in the direction parallel to y- axis.

Show that
$$\nabla^2 f(r) = f''(r) + \frac{2}{r} f'(r)$$
, where $r = \sqrt{x^2 + y^2 + z^2}$. (3)

A vector field is given by $\vec{A} = (x^2 + xy^2)\hat{i} + (y^2 + x^2y)\hat{j}$. Show that the field is irrotational and find the scalar potential. (4)

----Fnd-----