Question Paper

Exam Date & Time: 30-Apr-2024 (02:30 PM - 05:30 PM)

MANIPAL ACADEMY OF HIGHER EDUCATION

IV Semester End Semester Examination

ENGINEERING MATHEMATICS - IV [MAT 2223]

Marks: 50

Duration: 180 mins.

Descriptive Questions

Answer all the questions.

Section Duration: 180 mins

- 1) The chance that a doctor A will diagnose the disease correctly is 60% . The chance that the (3)
 - A) patient of A will die after correct diagnosis is 40% and the chance of death by wrong diagnosis is 70%. If a patient of A dies. What is the probability that his disease was diagnosed correctly?
 - B) Find the mean and variance of Binomial distribution. (3)
 - The diameter of an electric cable, say X is assumed to be a continuous random variable with pdf (4) $f(x) = \begin{cases} kx(1-x), & 0 \le x \le 1 \\ 0, & otherwise. \end{cases}$
 - i. Find the value of K.
 - ii. Compute the probability $P(X \le \frac{1}{2} \mid \frac{1}{3} < X < \frac{2}{3})$.
 - iii. Compute E(X).
- 2) The heights of 500 soldiers are found to have normal distribution, of them258 are found to be (3) within 2 *cm* of the mean height of 170 *cm*. Find the standard deviation.
 - B) If X, Y and Z are uncorrelated random variables with standard deviations S, I2 and S respectively. If U = X + Y and V = Y + Z. Evaluate the correlation coefficient between U and V.
 - C) Suppose that the joint pdf of (X, Y) is given by (4)

$$f(x,y) = \begin{cases} e^{-y}, & x > 0, y > x \\ 0, & otherwise. \end{cases}$$

i. Find the marginal pdf of X and Y.

ii. Evaluate P(Y > X).

- If the probability distribution function of X is given by $f(x) = \begin{cases} 2x, & 0 \le x \le 1 \\ 0, & otherwise. \end{cases}$ Find the (3) pdf of Y = 3X + 1.
 - Suppose that the two-dimensional random variable (X, Y) is uniformly distributed over the region (3) whose vertices are (1, 0), (0, 1), (-1, 0) and (0, -1). Find the marginal pdf of X and Y.
 - Suppose an urn A contains 2 white marbles and urn B contains 4 red marbles. At each step of the (4) process, a marble is selected at random from each urn and the two marbles selected are interchanged. Let X_n denote the number of red marbles in urn A after n interchanges.
 - i. Find the transition matrix.
 - ii. What is the probability that there are 2 red marbles in urn A after 3 steps.
- Solve by graphical method Maximize $Z = 5x_1 + 4x_2$ subject to (3)
 - A) $6x_1 + 4x_2 \le 24$, $x_1 + 2x_2 \le 6$, $x_1 x_2 \le 1$, $x_1 \le 2$, $x_1, x_2 \ge 0$.
 - B) Iterate three steps for minimum of $f(x) = x_1^2 + 3x_2^2$ starting from $x_0 = (4, 2)$ using steepest (3) descent method.
 - C) Find the solution for LPP using Simplex method (4) $\text{Maximize } Z = 3x_1 + 2x_2 \text{ subject to } x_1 + x_2 \leq 4, \quad x_1 x_2 \leq 2, \quad x_1, x_2 \geq 0.$
- Find the directional derivative of $\mathbf{Ø} = 4e^{2x-y+z}$ at the point (1, 1, -1) in the direction (3)
 - A) towards the point (-3, 5, 6).
 - Find the acute angle between the surfaces $xy^2z = 3x + z^2$ and $3x^2 y^2 + 2z = 1$ at the point (2, -1, 2).
 - Show that $\vec{F} = (2xy^2 + yz)\hat{i} + (2x^2y + xz + 2yz^2)\hat{j} + (2y^2z + xy)\hat{k}$ is a conservative force field. Find the Scalar potential. (4)

----End-----