

MANIPAL ACADEMY OF HIGHER EDUCATION

IV SEMESTER B.TECH END SEMESTER EXAMINATIONS, MAY 2024 MANIPAL INSTITUTE OF TECHNOLOGY

CHEMICAL REACTION ENGINEERING [CHE 2223]

	CHEMICAL REACTION ENGINEERING [CHE 2223]	
Marks: 5	Duration: 180	mins
	A	
Answer a	all the questions.	
Instructio	ns to Candidates: Answer ALL questions. Missing data may be suitably assumed	
1)	Develop (guess and then verify) a mechanism that is consistent with the experimentally found rate equation for the following reaction	
A)	$2A + B \rightarrow A_2B$, with $+r_{A2B} = k[A][B]$	(5)
B)	The natural abundance of ²³⁵ U in uranium is 0.79 atom %. If a sample of uranium is enriched to 3 atom % and then is stored in salt mines under the ground, how long will it take the sample to reach the natural abundance level of ²³⁵ U (assuming no other processes form ²³⁵ U; this is not the case if ²³⁸ U is present since it can decay to form ²³⁵ U)? The half-life of ²³⁵ U is 7.13 * 10 ⁸ years.	(3)
C)	Discuss Integral method of analysis, by developing an equation for a unimolecular 1st order reaction.	(2)
2)	The rate of the following reaction has been found to be first-order with respect to hydroxyl	
A)	ions and ethyl acetate: $A + B \rightarrow C + D$	
	In a stirred-flow reactor of volume $V = 0.602$ L, the following data have been obtained at 298 K.	t
	flow rate of barium hydroxide solution: 1.16 L/h	(5)
	flow rate of ethyl acetate solution: 1.20 L/h	
	inlet concentration of OH-: 0.00587 mol/L	
	inlat concentration of other acceptant 0.0220 mod/l	

outlet concentration of OH : 0.001094 mol/L

			Calc			rate	const	ant. (Chan	ges in	volu	ıme a	ccom	pany	ing th	ne reac	tion a	re		
	B)		Dev	elop	per	forma	nce e	quati	on fo	or an l	n Ideal batch reactor									
	C)	Differentiate τ and t_m .																		
	4																			(2)
3)	A)		Pure A (C_{AO} = 100) is fed to a mixed reactor, R and S are formed, and the following outlet concentrations are recorded. Find a kinetic scheme to fit this data. Make necessary assumptions and clarify.																	
	Λ)		Run	CA	C_{R}	c_{s}														
			1	75	15	10														(5)
			2	25	45	30														
	B)					graphi d in s			lure t	o opti	mize	the o	conve	rsion	, whe	n uneq	ual si	zed Mi	FR's	(3)
	C)		Classify Instantaneous (ψ) and Overall fractional yields (ϕ). How is it different from Selectivity?															m	(2)	
4)	A)		A pulse study performed on a real reactor. A first order reaction $A \to R$ is to be carried out in this reactor of dia. 10 cm and length 2 m. The specific reaction rate is 0.1 min ⁻¹ . Calculate conversion using a) Ideal PFR; b) Ideal CSTR.																	
	538		t (s)		0	1	5	15	20	25	30	35	40	60	80					(5)
		4	C _A	(mg/	L) 0	0.25	0.38	0.58	0.51	0.39	0.22	0.11	0.05	0.01	0.0					
	B)		Analyze series type reactions and assess them qualitatively.													(3)				
	C)		Desc	ribe	the	differ	ent ty	pes o	of tra	cer in	puts.									(2)

5)	Derive and provide insights for the Michaelis-Menten equation.	
		(4)
A)		
B)	Discuss about competitive and non-competitive inhibition in enzymatic reactions.	(3)
C)	Compare briefly, the different theories of temperature dependency of a rate equation.	(3)

-----End-----