				1	
Reg. No.	The state of the state of		1 12	5161	

MANIPAL INSTITUTE OF TECHNOLOGY

(A constituent unit of MAHE, Manipal)

FOURTH SEMESTER B.TECH. (CIVIL ENGINEERING) END SEMESTER EXAMINATIONS, JUNE2024

ENGINEERING MATHEMATICS-IV [MAT-2225] REVISED CREDIT SYSTEM

Time:3 Hrs Time:2:30-5:30pm

Date: 14 JUNE 2024

Max. Marks: 50

Instructions to Candidates:

- Answer ALL the questions.
- Missing data may be suitably assumed.

Q.NO	Questions	Marks	CO	PO	BTL
1A.	Solve $(x^3 + 1)y'' + x^2y' - 4xy = 2$, $y(0) = 0$, $y(2) = 4$ and $h = 0.5$ using finite difference method		1	1,2,8,12	3
1B.	Solve $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$, $0 < x < 1$, $0 < y < 1$ subjected to the conditions $u(x, 1) = u(0, y) = 0$, $u(1, y) = 9(y - y^2)$, $u(x, 0) = 9(x - x^2)$ by taking $h = 1$.	3	1	1,2,8,12	3
1C.	Solve the given LPP using Graphical Method: Minimize $Z = 20x + 10y$ Subject to, $x + 2y \le 40$ $3x + y \ge 30$ $4x + 3y \ge 60$ $x \ge 0, y \ge 0$	4	4	1,2,8,12	5
2A.	Solve $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$, $0 < x < 4$, $t > 0$, $u(x,0) = \frac{x}{3}(16 - x^2)$, and the boundary conditions are $u(0,t) = u(4,t) = 0$, $h = 1$. Find u for one-time step by Crank-Nicholson's method with $\lambda = 1$.	3	1	1,2,8,12	3
2В.	Let X be a continuous random variable with p.d.f $f(x) = \frac{1}{\pi(1+x^2)}$ for $-\infty \le x \le \infty$. Find the pdf of $Y = \frac{1}{x}$.		3	1,2,8,12	3
2C.	The average test marks in a particular class is 79 and the standard deviation is 5. If the marks are normally distributed then, how many students in a class of 200 did not receive marks between 75 and 82?	4	2	1,2,8,12	4
3A.	Show that the geodesics on a plane are straight lines.	3	5	1,2,8,12	3

MAT-2225

3	After correcting 50 pages of the proof of a book, the proof reader finds that there are on an average, 2 errors per 5 pages. How many pages would one expect to find with 0,1,2,3 and 4 errors in 1000 pages of the first print of the book?				3	2	1,2,8,12	4
	If X , Y and Z are independent random variables $M_X(t) = e^{2t(1+t)}$, $M_Y(t) = e^{3t(1+t)}$ and $M_Z(t) = e^{4t(1+t)}$ respectively. Find the moment generating function $U = 4X + Y + 2Z$. Hence obtain $E\left(\frac{U}{2}\right)$.				4	3	1,2,8,12	4
	Let \overline{X} be the sample mean of a sample of size 25 from the distribution which has $N(3,100)$. Evaluate $P(0 < \overline{X} < 6)$.				3	3	1,2,8,12	3
4B.	Find the extremals of the functional $\int_{x_1}^{x_2} \frac{(y')^2}{x^3} dx$				3	5	1,2,8,12	3
1	Solve the wave equation $\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}$, $0 < x < 1, t > 0$, $u(x,0) = 100(x - x^2)$, $\frac{\partial u}{\partial t}(x,0) = 0$ and the boundary conditions are $u(0,t) = u(1,t) = 0$, $h = 0.25$. Find u for 4-time steps				4	1	1,2,8,12	4
5A.	Use Simplex method and solve				5	4	1,2,8,12	5
3D.	Obtain the basic feasible solution by Vogel's approximation and check for the optimality of transportation problem To → A B C D Supply From l							
		23 31 45 40	69 32	150 40	5	4	1,2,8,12	5
	S3 30	54 35	57	80				
	Demand 90	70 50	60	± .		ā	is it is	