Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL

(A constituent unit of MAHE, Manipal)

IV SEMESTER B.TECH. (ELECTRICAL & ELECTRONICS ENGINEERING) MAKEUP EXAMINATIONS, JUNE 2024

ELECTRICAL MACHINERY-II [ELE 2225]

REVISED CREDIT SYSTEM

	26 June 2024	Max. Marks: 50
Instr	uctions to Candidates:	
	 Answer ALL the questions. 	
	 Missing data may be suitably assumed. 	
1A.	With the aid of EMF-MMF diagram, explain the effect of arm when an alternator is connected to	ature reaction
	(a) capacitive load	
	(b) Inductive load	
	(c) Lagging load	3
1B.	A 3-phase alternator has 2 slots per pole per phase and a coil pitch. The flux density wave of alternator consists of a funda 25% third harmonic. Calculate the percentage increase in the due to harmonic.	amental and a
1C.	A three-phase, 20 MVA, 11 kV, 50 Hz star-connected altern 4 Ω and Xq = 3 Ω . Armature resistance is negligibly small. A lagging power factor, determine:	
	(a) Direct and quadrature axes components of the armature	current.
	(b) Excitation emf.	4
2A.	An industrial load of 500 kW, 0.707 pf lagging is required to to 600 kW, 0.95 pf lagging by connecting a synchronous mo Determine the kVA rating and power factor at which it opera	tor in parallel.
2B.	What is the significance of synchronizing power coefficient for pole alternator?	r a non-salient 2
2C.	A 3 phase, 20 MVA, star connected alternator with an impeda 6) Ω per phase is operating in parallel with constant voltage 1 The field current is adjusted to give a line excitation voltage of constant excitation, calculate (a) Maximum power outpalternator	1 kV bus bars. of 12 kV. With
	(b) Armature current and power factor under maximum pow	er condition. 4

3A.	Two identical 2000 kW alternators operate in parallel. The governor of the first machine is such that the frequency drops uniformly from 50 Hz on no- load to 48 Hz on full load. The corresponding uniform speed drop of the second machine is 50 Hz to 47.5 Hz.	
	(a) How will the two machines share a load of 3000 kW?	
	(b) What is the maximum load at upf that can be delivered without overloading either machine?	3
3B.	List the necessary conditions to be satisfied while synchronizing 3 phase alternators. With neat connection diagram, explain "Two Bright One Dark Lamp method" of synchronization.	3
3C.	How is BLDC motor different than a conventional DC motor? Explain.	4
4 A .	Bring out the similarities / differences between a synchronous reluctance motor and a conventional synchronous motor. Give one application for each of the motors	
4B.	Explain the construction, working and control of switched reluctance motor.	3
4C.	How is reversing and speed control achieved in a BLDC motor. Explain with neat diagrams.	
5A.	Can a PMSM replace a three-phase induction motor driving a pump? Explain.	3
5B.	What is the need for special electrical machines in the present age? Explain.	3
5C.	Explain the control of stepper motors using neat diagram.	4