## **Question Paper**

Exam Date & Time: 03-May-2024 (02:30 PM - 05:30 PM)



## MANIPAL ACADEMY OF HIGHER EDUCATION

## FOURTH SEMESTER B.TECH. (ELECTRONICS AND COMMUNICATION ENGINEERING) DEGREE EXAMINATIONS -APRIL / MAY 2024 SUBJECT: ECE 2222/ECE\_2222 - DIGITAL SIGNAL PROCESSING

Marks: 50

Duration: 180 mins.

## Answer all the questions.

| 1A) | Compute the 6-point DFT of the sequence $x(n) = \{0, 1, 2, 3, 2, 1\}$ using matrix multiplication method.                                                                                                                                                                                                                                                        | (5) |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 1B) | State and prove the circular convolution property of DFT of two sequences $x_1(n)$ and $x_2(n)$ .                                                                                                                                                                                                                                                                | (3) |
| 1C) | Describe the Goertzel algorithm with expressions. What is it used for?                                                                                                                                                                                                                                                                                           | (2) |
| 2A) | Compute the 8-point DFT of the sequence $x(n) = \{1, 0.5, 0, -0.5, -1, -0.5, 0, 0.5\}$ using decimation in frequency FFT algorithm. Illustrate that the computation is faster than the direct computation of DFT.                                                                                                                                                | (5) |
| 2B) | Analyze the FIR lattice structure whose lattice coefficients are: $K_1 = 0.65$ , $K_2 = -0.34$ & $K_3 = 0.8$ , and obtain its impulse response coefficients.                                                                                                                                                                                                     | (3) |
| 2C) | Realize the linear phase FIR filter of length $M = 7$ , whose first four filter coefficients are: 1, 1/3, -1/8 and 1/5.                                                                                                                                                                                                                                          | (2) |
| 3A) | A LPF has the desired frequency response                                                                                                                                                                                                                                                                                                                         | (5) |
| 3B) | $ H_d(e^{j\omega})  = \begin{cases} 1, & 0 \le  \omega  \le 0.5\pi\\ 0, & elsewhere \end{cases}$<br>Determine the filter coefficients h(n) using frequency sampling technique. Assume filter length M=9.<br>Determine the unit sample response h(n) of a 4 length linear phase symmetric FIR filter having frequency response up (2) = 1 = 1 = 1 = 1 = 1 = 2 = 5 | (3) |
|     | $H_r(0) = 1$ and $H_r(\frac{1}{2}) = 0.5$                                                                                                                                                                                                                                                                                                                        |     |
| 3C) | From Q3B determine the system function H(z) and the phase $\emptyset(\omega)$ for $H_r(\omega)>0$ .                                                                                                                                                                                                                                                              | (2) |
| 4A) | Certain IIR Butterworth LPF has the following specifications                                                                                                                                                                                                                                                                                                     | (5) |
|     | $-1.5dB \le 20log_{10}( H(e^{j\omega}) ) \le 0dB$ , $0 \le \omega \le \pi/3$                                                                                                                                                                                                                                                                                     |     |
|     | $20\log_{10}( H(e^{j\omega}) ) \le -10dB,  0.5\pi \le \omega \le \pi$                                                                                                                                                                                                                                                                                            |     |
|     | Assume T=1 second. Obtain the prewarped analog edge frequency specifications , order of filter,3-<br>dB cut-off frequency and poles of the filter.                                                                                                                                                                                                               |     |
| 4B) | For the filter specification given in Question 4A, determine the analog transfer function H(s).                                                                                                                                                                                                                                                                  | (3) |
| 4C) | For the filter specification given in Question 4A, determine the system function $H(z)$ . Use bilinear transformation.                                                                                                                                                                                                                                           | (2) |
| 5A) | Given the system function $H(z) = \frac{1+z^{-1}+0.5z^{-2}}{1+0.2z^{-1}-0.15z^{-2}}$ . Obtain the lattice ladder structure.                                                                                                                                                                                                                                      | (5) |

5B) Convert the analog filter into its equivalent digital filter using impulse invariance method whose (3) transfer function is given by  $H(s) = \frac{s+1}{1-s}$  Assume T=1 second.

$$H(s) = \frac{s+1}{s^2+2s+17}$$
.

5C) Illustrate the concept of spectral leakage and spectral resolution problems occurring in spectral (2) estimation from finite duration signals.

-----End-----