Question Paper

Exam Date & Time: 24-Jun-2024 (02:30 PM - 05:30 PM)

MANIPAL ACADEMY OF HIGHER EDUCATION

 ${\tt 4TH\ SEMESTER,\ E\&I,\ B.TECH\ MAKE-UP\ EXAMINATIONS,\ DEPARTMENT\ OF\ I\&CE,\ JUNE\ 2024}$

LINEAR INTEGRATED CIRCUITS [ICE 2221]

Marks: 50 Duration: 180 mins.

Α

Answer all the questions.

Ins	Instructions to Candidates: Missing data may be suitably assumed					
1)		With the help of a circuit diagram, derive the expression for the gain of an instrumentation amplifier. (CO1, BL3, PO1)	(3)			
	A)					
	B)	Illustrate the working of a current amplifier in grounded load and floating load configuration with a circuit diagram and mathematical expressions. (CO1, BL4 PO1)	(4)			
	C)	Design input and feedback resistance of a lossy integrator such that the peak gain in 20 dB and gain is 3 dB down from the peak value when ω = 10000 rad/s. Assume capacitance as 10nF. (CO1, BL4, PO1, 3)	(3)			
2)		With a circuit diagram, derive the expression for the transfer function of a second order low pass filter. (CO2, BL3, PO1)	(5)			
	A)					
	B)	With a suitable circuit diagram, derive the expression for a series-series op-amp feedback configuration. (CO1, BL3, PO1)	(3)			
	C)	Design a suitable op-amp based circuit that gives an output, $V_o=-4(6V_1+8V_2+4V_3)^{+({ m CO1,BL4,PO1,3})}$	(2)			
3)	A)	Design a multiple feedback band pass filter having f $_0$ = 2.8 kHz, Q = 10, H $_0$ = 30 dB. Consider C $_1$ = C $_2$ = 0.47 μ F. (CO2, BL4, PO1, 3)	(3)			
	B)	With a suitable circuit diagram, explain the working of an on-off temperature controller. (CO3, BL2, PO1)	(3)			
	C)	With relevant circuit diagrams and waveforms, illustrate the modes of operation for a peak detector circuit. (CO3, BL3, PO1)	(4)			
4)		Design an astable multivibrator using 555 timer having a duty cycle of 54% and frequency of 2.4kHz. Choose C = 0.036μ F. (CO4, BL4, PO1, 3)	(3)			
	A)					
	B)	With the relevant circuit diagrams, derive the expression of the frequency of oscillations and feedback resistance in terms of the input resistance of a Wien Bridge oscillator. (CO4, BL3, PO1)	(3)			

	C)	Obtain the expression of pulse width for a monostable multivibrator circuit using an op-amp with suitable circuit and waveforms. (CO4, BL3, PO1)	(4)
5)		Illustrate the working of a counter type ADC with a suitable block diagram and waveforms. (CO5, BL3, PO1)	(4)
	A)		
	B)	An 8-bit DAC produces V_{out} = 0.25 V for a digital input of 00000001. Find the full-scale output. What is V_{out} for an input of 01011001 and 11010011? (CO5, BL4, PO1, 3)	(3)
	C)	What are the output voltages caused by logic 1 in each bit position in an R-2R ladder with input 10110110, if the input level for 0 is 1V and that for 1 is 5V? (CO5, BL4, PO1, 3)	(3)

-----End-----