MANIPAL INSTITUTE OF TECHNOLOGY

MANIPAL (A constituent unit of MAHE, Manipal)

DEPARTMENT OF MECHATRONICS IV SEMESTER B.TECH. MECHATRONICS

END SEMESTER EXAMINATION, MAY 2024

SUBJECT: Design of Machine Elements Subject Code: MTE 2222

Date: 07/05/2024

Time: 180 Mins

Exam time: 2:30 pm – 5:30 pm MAX. MARKS: 50

Answer ALL questions.

✤ Missing data if any, maybe suitably assumed.

Q.		М	CO	РО	LO	BL
No.						
1A.	A cantilever beam of a circular cross-section is loaded, as shown in Fig Q1A below. If the beam has a diameter of 40 mm, select a suitable material from Table Q1A. Adopt maximum shear stress theory using a factor of safety 4. f = 450 N	5	2	1,3	1,2	3
	$\begin{array}{c} A \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$					
	MaterialUltimate Strength (MN/m²)Yield strength (MN/m²)Wrought iron332186Cast steel414218SAE 1025 Annealed steel462234SAE 1045 annealed steel586310Water quenched steel828624Oil quenched steel952700					
	Table Q1A					
1B.	A non-rotating circular shaft made of a material with a yield stress of 300 MN/m ² is subjected to a pull of 100KN, as shown below in Fig Q1B. Taking the safety factor as 3, determine the shaft dimensions.	3	2	1,3	1,2	3
	6.1d d 1.1d 0.2d 0.1d d 1.1d d → Fig Q1B					
1C.	An SKF6315 bearing is used to support a shaft running at 125 RPM. If the bearing is subjected to a pure radial load of 21000N, calculate the expected life of the bearing in number of hours.	2	4	1,3	1,2	3

2A.		5	1	1,3	1 2	4
2A.	When the diver stands at end C of the diving board, it deflects downward by	5	1	1,5	1,2	4
	90 mm, as shown in Fig Q2A. Analyze the scenario and determine the weight					
	of the diver. The board is made of a material with a Modulus of Elasticity of					
	E = 10 GPa. The board has a rectangular cross-section with a breadth of 457					
	mm and a depth of 50 mm. The board is simply supported at A and B. Use					
	Macaulay's method to solve the beam deflection equation.					
	90 mm $\frac{B}{1}$ $\frac{B}{C}$ 2.7 m 1 m					
	Fig Q2A					
2B.	A shaft is placed between 2 bearings 1.5 m apart. A pulley weighing 2000N is	3	5	1,3	1,2	3
	placed at the centre of the shaft. The pulley transmits 15kW at 150 RPM to			,		
	another pulley exactly below it. The total belt tension is 650N. If the allowable					
	shear stress is 50 MN/m ² , estimate the diameter of the shaft. Take $C_m = C_t = 1.5$.					
	Use maximum shear stress theory.					
2C.	A steel shaft 35 mm in diameter and 1.2m long is held rigidly at one end and	2	1	1,3	1,2	3
	has a hand wheel of 500 mm diameter keyed to it at the other end, as shown		-	-,-	-,-	-
	in Fig Q2C. If the modulus of rigidity of steel is 80 GPa, calculate the force					
	applied along the tangent to the rim of the wheel that produces a torsional shear					
	of 60 MPa in the steel shaft.					
	Shaft Hand Wheel					
	Fig Q2C					
3A.	A pair of spur gears have 20° full depth involute teeth. The pinion is connected	5	4	1,3	1,2	3
	to a 35kW motor and rotates at 1440 RPM. The speed reduction is 10:1. The					
	number of teeth on the pinion is 24. The pinion is made of C40 untreated steel,					
	and the gear is made of case-hardened alloy steel. The gears are subjected to					
				1		

	steady loads and operate	e 8-10 hours per day. The gears should be ordinar	v cut					
	•		y out					
	gears. Calculate the face	e width and diameters of the gears.						
3B.	A pair of spur gears hav	e been designed with the following parameters. I	If the	3	4	1,3	1,2	3
	wear load is 7300 N, de	termine the safety of the design.						
	Type of gear	Spur						
	Power to be transmitted Pinion material and speed	2kW Cast iron (σ_d =48 N/mm ² , BHN=180) @1200 RPM						
	Gear material and speed	Youngs modulus=100 x10 ³ N/mm ² Cast iron (σ_d =56.4N/mm ² , BHN=180) @ 192 RPM Youngs modulus=100 x10 ³ N/mm ²						
	Gear Profile	20° full depth involute						
	Operation	8 hours/day with light shock loads. Carefully cut						
	Module	4						
	Pinion diameter	60 mm						
	Gear diameter	376 mm						
	Face width Weaker member	38 mm Pinion						
3C.		ring has a wire of 5 mm diameter and an allow	vable	2	3	1,3	1,2	3
		n^2 . It has 12 active coils, and the spring index						
		a axial force it can carry and the corresponding						
			umui					
	compression.Take G=82	2x 10 ³ N/mm ²						
4A.	A shaft is supported by 2	2 bearings 600 mm apart. It carries a belt-driven p	ulley	5	5	1,3	1,2	3
	positioned at 200 mm	to the left of the right-hand bearing. The pulle	ey is					
	between the bearing an	d receives 20 kW from a motor through a horized	ontal					
	belt drive. Pulley weigh	s 500N and has a diameter of 400 mm. The allow	vable					
	shear stress of shaft material is 65 N/mm ² , and loads are suddenly applied with							
	minor shocks. Design the shaft for a speed of 800 RPM using maximum shear							
	stress theory. The angle	e of the wrap is 178 degrees, and the coefficient	nt of					
	friction is 0.3.							
4B.	The lead screw of a lat	he has single start square threads of 52 mm non	ninal	3	4	1,3	1,2	3
	diameter and 8mm pitch	n. The screw is required to exert an axial force of 2	2 kN					
	in order to drive the tool	carriage during turning operation. The thrust is ca	rried					
	on a collar of 100 mm outer diameter and 60mm inner diameter. The values of the coefficient of friction at the screw threads and the collar are 0.15 and 0.12,							
	respectively. The lead s	crew rotates at 30 RPM. Calculate a. Power requ	uired					
	to drive the lead screw a	and b. The overall efficiency of the screw						
4C.	Direct stresses of 80 N/	mm ² tension and 60 N/mm ² compression are ap	plied	2	1	1,3	1,2	3
			P	-	-	-,-	-,-	÷
		a point on planes at right angles to one another.		-	-	-,-	-,-	

	-					
	Estimate the shearing stress the material might be subjected to on the given					
	planes. Also, calculate the maximum shearing stress at that point.					
5A.	A helical spring is to be designed for an operating load range of 1 kN to 1.3	5	3	1,3	1,2	3
	kN. The initial compression of the spring is 60 mm for a load of 1 kN. Assume					
	the spring index as 10. The shear stress in the spring material is 500 MPa, and					
	the modulus of rigidity is 82.7 GPa.					
5B.	An industrial robot (shown by a simplified representation in FigQ5B) is used	3	1	1,3	1,2	3
	to pick and place objects. Link 1 rotates about A-A axis and link 2 swivels					
	about B-B axis. The swiveling of link 2 is accomplished by an electric motor					
	from behind (along axis B-B). The robot is currently at a position as shown in					
	Fig Q7. If the robot is carrying a load of 50kN, estimate the diameter of the					
	motor shaft if it is made of material with allowable stress of 40 MN/m ² .					
	Link 1					
	Fig Q5B					
5C.	Select a suitable single-row deep groove ball bearing to support a pure radial	2	4	1,3	1,2	3
	load of 8 kN from a shaft that rotates at 500 RPM. The expected life of the					
	bearing is 30000 hrs. The minimum acceptable diameter of the shaft is 90 mm.					