		Reg. No.									
MANIPAL INSTITUTE OF TECHNOLOGY											
The state	MANIPAL										
VSPIRED BY LIS	(A constituent unit of MAH	IE, Manipal)									

DEPARTMENT OF MECHATRONICS ENGINEERING IV SEMESTER B.TECH. (MECHATRONICS) END SEMESTER EXAMINATIONS, MAY 2024

SUBJECT: LINEAR CONTROL THEORY [MTE 2224]

11/05/2024

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

✤ Answer ALL the questions.

Q.		Μ	CO	РО	LO	BL
1A.	Obtain the mechanical network and the differential equations for the mechanical translational system shown in Fig. 1A. Obtain the transfer function $X_3(s)/F(s)$.	5	1	1	1	3
1B.	Compute the transfer function for the electrical circuit shown below. $ \begin{array}{c} \stackrel{i_1(l)+i_2(l)}{\overbrace{v_1(l)}} & \stackrel{R_1}{\overbrace{i_1(l)}} & \stackrel{R_2}{\overbrace{c_1}} & \stackrel{R_2}{\overbrace{v_3(l)}} & \stackrel{R_2}{\overbrace{i_2(l)}} & \stackrel{I}{\overbrace{c_2}} & \stackrel{I}{\overbrace{c_2}} & \stackrel{I}{\overbrace{c_3}} & \stackrel{I}{\overbrace{c_4}} \\ \hline{Fig. 1B} \end{array} $	3	1	1	1	3
1C.	For a unity feedback control system with $G(s) = \frac{4}{s^2+0.4s}$ when subjected to unit step input, it is required that the system response should be settled with 2% tolerance band. Determine the transfer function and settling time		2	1	1	3
2A.	Use block diagram reduction technique in Fig. 2A. to obtain the transfer function C(s)/R(s) of a certain control system. $ \begin{array}{c} \hline & & & & \\ \hline $	4	1	1	1	3

2B.	The open loop transfer function of a unity feedback system is given by $G(s) = \frac{K}{s(sT+1)}$, where K and T are constants. By what factor should the amplifier gain 'K' be reduced so that the peak overshoot of unit step response is reduced from 60% to 20%.	3	2	1	1	3
2C.	The open loop transfer function of a unity feedback system is given by $G(s) = \frac{K}{s(1+sT_1)(1+sT_2)}$. Obtain the expression of 'K' to determine the stability of the system using R-H criteria.	3	3	3	5	3
3A.	Compute all the necessary values to draw root locus for the unity feedback open loop transfer function $G(s) = \frac{K}{s(s+3)(s^2+3s+4.5)}$	5	3	3	5	3
3B.	Draw the root locus for Q.3A and comment on stability.	3	3	3	5	4
3C.	Illustrate how the steady state response of the system can be improved using lag compensator	2	3	2	2	4
4A.	Compute the necessary values to draw bode plot for the open loop transfer function given by $G(s) = \frac{4}{(0.1s+1)^2(1+0.01s)}$	4	4	3	5	3
4B.	Draw the bode plot for the values computed in Q. 4A and comment on stability based on the observations from the plot.	3	4	3	5	3
4C.	Illustrate with an example on how PI controller improves the steady state response of the system.	3	4	2	2	4
5A.	A system is described by $\dot{X} = \begin{bmatrix} -1 & -4 & -1 \\ -1 & -6 & -2 \\ -1 & -2 & -3 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} u$ and $y = \begin{bmatrix} 1 & 1 \end{bmatrix} x$. Compute the transfer function from the state model shown.	5	4	1	1	3
5B.	A LTI system is characterized by homogenous equation $\dot{X} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$. Compute the solution of state equation assuming that the initial state vector is $x_0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$.	3	4	1	1	3
5C.	Illustrate with an example, the importance of safety measures to be taken care while handling any systems	2	5	3	5	5