	Reg. No.									
MANIPAL INSTITUTE OF TECHNOLOGY										
MANIPAL (A constituent unit of MA)	HE, Manipal)									

DEPARTMENT OF MECHATRONICS ENGINEERING IV SEMESTER B.TECH. (MECHATRONICS) END SEMESTER EXAMINATIONS, MAY 2024

SUBJECT: LINEAR CONTROL THEORY [MTE 2224]

11/05/2024

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

✤ Answer ALL the questions.

Q. No		Μ	СО	РО	LO	BL
1A.	A. Obtain the mechanical network and the differential equations for the mechanical translational system shown in Fig. 1A. Draw the equivalent force-voltage analogous network based on the mechanical network and obtain its analogous equations. $ \begin{array}{c} M2 \\ H1 \\ H1$		1	1	1	3
18.	Compute the transfer function X(s)/E _i (s) for the system shown in Fig. 1B . The following relations apply a. Force acting on mass M, is P(t) = K ₂ i ₂ (t) b. Back emf of coil $e_b = K_1 \frac{dx}{dt}$ $e_i(t) = K_{1} \frac{dx}{dt}$ Fig. 1B	3	1	1	1	3
1C.	A unity feedback servo-driven instrument has an open loop transfer function $G(s) = 10/(s(s+2))$. Compute a. Time domain response for unit step input b. Natural Frequency of oscillation and damping ratio	3	2	1	1	3

2A. Apply Masons gain formula to obtain the transfer function of a certain 4 1	1	1	
control system whose signal flow graph is given in Fig. 2A.	1	1	3
G_4			
$\begin{array}{c} 1 \\ x_1 \\ x_2 \\ -H_1 \\ -H_2 \end{array} \xrightarrow{f_1} \begin{array}{c} G_1 \\ x_2 \\ -H_1 \\ -H_3 \end{array} \xrightarrow{f_1} \begin{array}{c} G_2 \\ x_3 \\ -H_1 \\ -H_3 \end{array} \xrightarrow{f_1} \begin{array}{c} f_1 \\ f_2 \\ f_3 \\ f_4 \\ f_5 \\ f$			
Fig. 2A			
2B. A unity feedback control system has an amplifier with a gain $K_A=10$ and gain ratio $G(s) = 1/(s(s+2))$ in the feedforward path. A derivative feedback $H(s)=sK_0$ is introduced as minor loop around $G(s)$. Determine the natural frequency of oscillations and derivative feedback constant K_0 so that the system has a damping factor of 0.6.	1	1	3
2C. The open loop transfer function of a certain unity feedback system is given by $G(s) = \frac{K}{(s+2)(s+4)(s^2+6s+25)}$. Determine the range of K for stability. What is the value of K for sustained oscillations? compute the oscillation frequency using R-H criteria.	3	5	3
3A. Compute all the necessary values to draw root locus for the unity 5 3	3	5	3
3A. Compute all the necessary values to draw root locus for the unity feedback open loop transfer function $G(s) = \frac{K}{s(s+2)(s^2+6s+25)}$ 5 3	3	5	3
3B. Draw the root locus for Q.3A and comment on stability. 3 3	3	5	4
3C. Illustrate how the transient response of the system can be improved using 2 3 lead compensator	1	2	4
4A. Compute the necessary values to draw bode plot for the open loop transfer function given by $G(s) = \frac{(0.2s+1)(0.025s+1)}{s^3(1+0.01s)(1+0.005s)}$	3	5	3
4B. Draw the bode plot for the values computed in Q. 4A and comment on 3 4 stability based on the observations from the plot.	3	5	4
4C.Illustrate with an example on how PID controller improves the steady34state response of the system.4	1	2	4
5A. A system is described by $\dot{X} = \begin{bmatrix} -1 & -4 & -1 \\ -1 & -6 & -2 \\ -1 & -2 & -3 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} u$ and $\begin{bmatrix} 5 & 4 \\ 1 \\ 1 \end{bmatrix}$	1	1	3
y=[1 1 1]x. Compute the transfer function from the state model shown.			
5B. A LTI system is characterized by homogenous equation $\dot{X} = \begin{bmatrix} 3 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$. Compute the solution of state equation assuming that the initial state vector is $x_0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$.	1	1	3
$ $ the initial state vector is $x_0 - _0 $.		9	4
5C. Illustrate with an example, the importance of safety measures to be taken 2 5	6		