	Reg. No.									
ANIPAL I	NSTITUT	Ъ.	OF	TE	CF	IN	OL	00	GΥ	
MANIPAL (A constituent unit of MAN										

DEPARTMENT OF MECHATRONICS IV SEMESTER B.TECH. MECHATRONICS

END SEMESTER EXAMINATION, APRIL - MAY 2024

SUBJECT: THEORY OF MACHINES [MTE 2221]

(03/05/2024)

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

✤ Answer ALL the questions.

✤ Data not provided may be suitable assumed.

1A.Classify the kinematic pairs according to nature of mechanical constraint.2111L21B.The following are particular of pair of spur gears. Number of teeth on pinion (Driving) = 19. Number of teeth on gear (Driven) = 47. Pressure angle = 20 degree. Module 6.5mm, Addendum = 6.5 mm. Determine i) number of pairs of teeth in contact ii)ratio of velocity of sliding to rolling velocity, when pinion tooth tip touches the gear flank4122L41C.Analyse the inversion obtained by fixing the link 2 of slider crank chain which has application in workshops to cut metals. Draw relevant sketch. (In a basic slider crank mechanism link 1 represents frame, link 2 crank, link 3 connecting rod and link 4 is slider)422L42A.The velocity ratio of two spur gears in mesh is 0.4 and the centre distance is about 75mm. For a module of 1.2 mm, find the number of teeth of the gears. Also find exact centre distance between them.3223L42BDesign a slider crank mechanism to coordinate three positions of the input and of the slider for the following data by inversion methods: - $\theta_{12} = 30^{\circ}$; $\theta_{23} = 30^{\circ}$; $S_{12} = 40$ mm; $S_{23} = 56$ mm. Eccentricity = 20 mm3223L42CIn a four bar chain ABCD has a fixed link AD = 1m. The driving crank B and C, when angle BAD = 135 degree and AB rotates clockwise at a speed of 300 rpm with an angular acceleration of 20 rad/sec2 in334L4	Q.		Μ	СО	РО	LO	BL
constraint.Image: constraint in the image: co	No						_
1B.The following are particular of pair of spur gears. Number of teeth on pinion (Driving) = 19. Number of teeth on gear (Driven) = 47. Pressure angle = 20 degree. Module 6.5mm, Addendum = 6.5 mm. Determine i) number of pairs of teeth in contact ii)ratio of velocity of sliding to rolling velocity, when pinion tooth tip touches the gear flank4122L41C.Analyse the inversion obtained by fixing the link 2 of slider crank chain which has application in workshops to cut metals. Draw relevant sketch. (In a basic slider crank mechanism link 1 represents frame, link 2 crank, link 3 connecting rod and link 4 is slider)122L42A.The velocity ratio of two spur gears in mesh is 0.4 and the centre distance is about 75mm. For a module of 1.2 mm, find the number of teeth of the gears. Also find exact centre distance between them.3223L42BDesign a slider crank mechanism to coordinate three positions of the input and of the slider for the following data by inversion methods: $\theta_{12} = 30^\circ; \theta_{23} = 30^\circ; S_{12} = 40$ mm; $S_{23} = 56$ mm. Eccentricity = 20 mm32233,4L42CIn a four bar chain ABCD has a fixed link AD = 1m. The driving crank A B = 0.3m. The follower link CD = 0.6m and the connecting link BC = 1.2m. Find the velocity and acceleration of point P midway between B and C, when angle BAD = 135 degree and AB rotates clockwise at a speed of 300 rpm with an angular acceleration of 20 rad/sec ² in33,4L4	1A.		2	1	1	1	L2
pinion (Driving) = 19. Number of teeth on gear (Driven) = 47. Pressure angle = 20 degree. Module 6.5mm, Addendum = 6.5 mm. Determine i) number of pairs of teeth in contact ii)ratio of velocity of sliding to rolling velocity, when pinion tooth tip touches the gear flank122L31C.Analyse the inversion obtained by fixing the link 2 of slider crank chain which has application in workshops to cut metals. Draw relevant sketch. (In a basic slider crank mechanism link 1 represents frame, link 2 crank, link 3 connecting rod and link 4 is slider)122L32A.The velocity ratio of two spur gears in mesh is 0.4 and the centre distance is about 75mm. For a module of 1.2 mm, find the number of teeth of the gears. Also find exact centre distance between them.3223L42BDesign a slider crank mechanism to coordinate three positions of the input and of the slider for the following data by inversion methods: $\theta_{12} = 30^{\circ}; \theta_{23} = 30^{\circ}; S_{12} = 40$ mm; $S_{23} = 56$ mm. Eccentricity = 20 mm3223L42CIn a four bar chain ABCD has a fixed link AD = 1m. The driving crank A B = 0.3m. The follower link CD = 0.6m and the connecting link BC = 1.2m. Find the velocity and acceleration of point P midway between B and C, when angle BAD = 135 degree and AB rotates clockwise at a speed of 300 rpm with an angular acceleration of 20 rad/sec ² in334L4							
Pressure angle = 20 degree. Module 6.5mm, Addendum = 6.5 mm. Determine i) number of pairs of teeth in contact ii) ratio of velocity of sliding to rolling velocity, when pinion tooth tip touches the gear flankImage: Context of the flam term is the flam t	1B.	The following are particular of pair of spur gears. Number of teeth on	4	4	2	2	L4
Determine i) number of pairs of teeth in contact ii) ratio of velocity of sliding to rolling velocity, when pinion tooth tip touches the gear flankImage: Context of the second secon		pinion (Driving) = 19. Number of teeth on gear (Driven) = 47.					
i) number of pairs of teeth in contact ii) ratio of velocity of sliding to rolling velocity, when pinion tooth tip touches the gear flankII <td></td> <td>Pressure angle = 20 degree. Module 6.5mm, Addendum = 6.5 mm.</td> <td></td> <td></td> <td></td> <td></td> <td></td>		Pressure angle = 20 degree. Module 6.5mm, Addendum = 6.5 mm.					
ii)ratio of velocity of sliding to rolling velocity, when pinion tooth tip touches the gear flankii)ratio of velocity of sliding to rolling velocity, when pinion tooth tip touches the gear flank1C.Analyse the inversion obtained by fixing the link 2 of slider crank chain which has application in workshops to cut metals. Draw relevant sketch. (In a basic slider crank mechanism link 1 represents frame, link 2 crank, link 3 connecting rod and link 4 is slider)122L32A.The velocity ratio of two spur gears in mesh is 0.4 and the centre distance is about 75mm. For a module of 1.2 mm, find the number of teeth of the gears. Also find exact centre distance between them.2422L42BDesign a slider crank mechanism to coordinate three positions of the input and of the slider for the following data by inversion methods: $\theta_{12} = 30^\circ$; $\theta_{23} = 30^\circ$; $S_{12} = 40$ mm; $S_{23} = 56$ mm. Eccentricity = 20 mm3223L42CIn a four bar chain ABCD has a fixed link AD = 1m. The driving crank A B = 0.3m. The follower link CD = 0.6m and the connecting link BC = 1.2m. Find the velocity and acceleration of point P midway between B and C, when angle BAD = 135 degree and AB rotates clockwise at a speed of 300 rpm with an angular acceleration of 20 rad/sec ² in233,4L4		Determine					
tip touches the gear flankImage: Constraint of the solution of the s		i) number of pairs of teeth in contact					
1C.Analyse the inversion obtained by fixing the link 2 of slider crank chain which has application in workshops to cut metals. Draw relevant sketch. (In a basic slider crank mechanism link 1 represents frame, link 2 crank, link 3 connecting rod and link 4 is slider)122L32A.The velocity ratio of two spur gears in mesh is 0.4 and the centre distance is about 75mm. For a module of 1.2 mm, find the number of teeth of the gears. Also find exact centre distance between them.2422L42BDesign a slider crank mechanism to coordinate three positions of the input and of the slider for the following data by inversion methods: $\theta_{12} = 30^{\circ}$; $\theta_{23} = 30^{\circ}$; $S_{12} = 40$ mm; $S_{23} = 56$ mm. Eccentricity = 20 mm3223L42CIn a four bar chain ABCD has a fixed link AD = 1m. The driving crank A B = 0.3m. The follower link CD = 0.6m and the connecting link BC = 1.2m. Find the velocity and acceleration of point P midway between B and C, when angle BAD = 135 degree and AB rotates clockwise at a speed of 300 rpm with an angular acceleration of 20 rad/sec ² in3233,4L4		ii)ratio of velocity of sliding to rolling velocity, when pinion tooth					
chain which has application in workshops to cut metals. Draw relevant sketch. (In a basic slider crank mechanism link 1 represents frame, link 2 crank, link 3 connecting rod and link 4 is slider)Draw relevant setch.Image: Construct of the state of the slider for the following data by inversion methods: - $\theta_{12} = 30^\circ$; $\theta_{23} = 30^\circ$; $S_{12} = 40$ mm; $S_{23} = 56$ mm. Eccentricity = 20 mmImage: Construct of the state		tip touches the gear flank					
sketch. (In a basic slider crank mechanism link 1 represents frame, link 2 crank, link 3 connecting rod and link 4 is slider)Image: Connecting rod and link 4 is slider)2A.The velocity ratio of two spur gears in mesh is 0.4 and the centre distance is about 75mm. For a module of 1.2 mm, find the number of teeth of the gears. Also find exact centre distance between them.24221.42BDesign a slider crank mechanism to coordinate three positions of the input and of the slider for the following data by inversion methods: - $\theta_{12} = 30^{\circ}$; $\theta_{23} = 30^{\circ}$; $S_{12} = 40$ mm; $S_{23} = 56$ mm. Eccentricity = 20 mm32231.42CIn a four bar chain ABCD has a fixed link AD = 1m. The driving crank AB = 0.3m. The follower link CD = 0.6m and the connecting link BC = 1.2m. Find the velocity and acceleration of point P midway between B and C, when angle BAD = 135 degree and AB rotates clockwise at a speed of 300 rpm with an angular acceleration of 20 rad/sec ² in3233,41.4	1C.	Analyse the inversion obtained by fixing the link 2 of slider crank	4	1	2	2	L3
link 2 crank, link 3 connecting rod and link 4 is slider)Image: connecting rod and link 4 is slider)Image: connecting rod and link 4 is slider)2A.The velocity ratio of two spur gears in mesh is 0.4 and the centre distance is about 75mm. For a module of 1.2 mm, find the number of teeth of the gears. Also find exact centre distance between them.2422L42BDesign a slider crank mechanism to coordinate three positions of the input and of the slider for the following data by inversion methods: - $\theta_{12} = 30^{\circ}$; $\theta_{23} = 30^{\circ}$; $S_{12} = 40$ mm; $S_{23} = 56$ mm. Eccentricity = 20 mm3223L42CIn a four bar chain ABCD has a fixed link AD = 1m. The driving crank AB = 0.3m. The follower link CD = 0.6m and the connecting link BC = 1.2m. Find the velocity and acceleration of point P midway between B and C, when angle BAD = 135 degree and AB rotates clockwise at a speed of 300 rpm with an angular acceleration of 20 rad/sec ² in5233,4L4		chain which has application in workshops to cut metals. Draw relevant					
2A.The velocity ratio of two spur gears in mesh is 0.4 and the centre distance is about 75mm. For a module of 1.2 mm, find the number of teeth of the gears. Also find exact centre distance between them.2422L42BDesign a slider crank mechanism to coordinate three positions of the input and of the slider for the following data by inversion methods: - $\theta_{12} = 30^{\circ}$; $\theta_{23} = 30^{\circ}$; $S_{12} = 40$ mm; $S_{23} = 56$ mm. Eccentricity = 20 mm3223L42CIn a four bar chain ABCD has a fixed link AD = 1m. The driving crank AB = 0.3m. The follower link CD = 0.6m and the connecting link BC = 1.2m. Find the velocity and acceleration of point P midway between B and C, when angle BAD = 135 degree and AB rotates clockwise at a speed of 300 rpm with an angular acceleration of 20 rad/sec ² in4221.4		sketch. (In a basic slider crank mechanism link 1 represents frame,					
distance is about 75mm. For a module of 1.2 mm, find the number of teeth of the gears. Also find exact centre distance between them.Image: Constraint of the second seco		link 2 crank, link 3 connecting rod and link 4 is slider)					
teeth of the gears. Also find exact centre distance between them.Image: Constraint of the series of th	2A.	The velocity ratio of two spur gears in mesh is 0.4 and the centre	2	4	2	2	L4
2BDesign a slider crank mechanism to coordinate three positions of the input and of the slider for the following data by inversion methods: - $\theta_{12} = 30^{\circ}$; $\theta_{23} = 30^{\circ}$; $S_{12} = 40$ mm; $S_{23} = 56$ mm. Eccentricity = 20 mm3223L42CIn a four bar chain ABCD has a fixed link AD = 1m. The driving crank AB = 0.3m. The follower link CD = 0.6m and the connecting link BC = 1.2m. Find the velocity and acceleration of point P midway between B and C, when angle BAD = 135 degree and AB rotates clockwise at a speed of 300 rpm with an angular acceleration of 20 rad/sec ² in3223L4		distance is about 75mm. For a module of 1.2 mm, find the number of					
input and of the slider for the following data by inversion methods: $\theta_{12} = 30^{\circ}; \theta_{23} = 30^{\circ}; S_{12} = 40 \text{ mm}; S_{23} = 56 \text{ mm}.$ Eccentricity = 20 mm20 mm2CIn a four bar chain ABCD has a fixed link AD = 1m. The driving crank AB = 0.3m. The follower link CD = 0.6m and the connecting link BC = 1.2m. Find the velocity and acceleration of point P midway between B and C, when angle BAD = 135 degree and AB rotates clockwise at a speed of 300 rpm with an angular acceleration of 20 rad/sec ² in5233,4L4		teeth of the gears. Also find exact centre distance between them.					
$ \begin{array}{ c c c c c c c } \hline \theta_{12} = 30^{\circ}; \ \theta_{23} = 30^{\circ}; \ S_{12} = 40 \ \text{mm}; \ S_{23} = 56 \ \text{mm}. \ \text{Eccentricity} = 20 \ \text{mm} \end{array} \\ \hline 2C & \text{In a four bar chain ABCD has a fixed link AD = 1m}. \ \text{The driving crank} & 5 & 2 & 3 & 3,4 & \text{L4} \\ \hline AB = 0.3m. \ \text{The follower link CD} = 0.6m \ \text{and the connecting link BC} \\ = 1.2m. \ \text{Find the velocity and acceleration of point P midway between} \\ \hline B \ \text{and C}, \ \text{when angle BAD} = 135 \ \text{degree and AB rotates clockwise at} \\ \hline a \ \text{speed of 300 rpm with an angular acceleration of 20 \ rad/sec^2 \ in} \end{array} $	2B	Design a slider crank mechanism to coordinate three positions of the	3	2	2	3	L4
$ \begin{array}{ c c c c c c c } \hline \theta_{12} = 30^{\circ}; \ \theta_{23} = 30^{\circ}; \ S_{12} = 40 \ \text{mm}; \ S_{23} = 56 \ \text{mm}. \ \text{Eccentricity} = 20 \ \text{mm} \end{array} \\ \hline 2C & \text{In a four bar chain ABCD has a fixed link AD = 1m}. \ \text{The driving crank} & 5 & 2 & 3 & 3,4 & \text{L4} \\ \hline AB = 0.3m. \ \text{The follower link CD} = 0.6m \ \text{and the connecting link BC} \\ = 1.2m. \ \text{Find the velocity and acceleration of point P midway between} \\ \hline B \ \text{and C}, \ \text{when angle BAD} = 135 \ \text{degree and AB rotates clockwise at} \\ \hline a \ \text{speed of 300 rpm with an angular acceleration of 20 \ rad/sec^2 \ in} \end{array} $		input and of the slider for the following data by inversion methods: -					
2CIn a four bar chain ABCD has a fixed link $AD = 1m$. The driving crank5233,4L4 $AB = 0.3m$. The follower link $CD = 0.6m$ and the connecting link BC= 1.2m. Find the velocity and acceleration of point P midway between5233,4L4B and C, when angle BAD = 135 degree and AB rotates clockwise at a speed of 300 rpm with an angular acceleration of 20 rad/sec ² in5233,4L4		· · ·					
AB = 0.3m. The follower link CD = 0.6m and the connecting link BC = 1.2m. Find the velocity and acceleration of point P midway between B and C, when angle BAD = 135 degree and AB rotates clockwise at a speed of 300 rpm with an angular acceleration of 20 rad/sec ² in	2C		5	2	3	3,4	L4
= 1.2m. Find the velocity and acceleration of point P midway between B and C, when angle BAD = 135 degree and AB rotates clockwise at a speed of 300 rpm with an angular acceleration of 20 rad/sec ² in		6					
B and C, when angle $BAD = 135$ degree and AB rotates clockwise at a speed of 300 rpm with an angular acceleration of 20 rad/sec ² in		0					
a speed of 300 rpm with an angular acceleration of 20 rad/sec ² in		• • •					
		counter clockwise direction.(Use Graphical Method, Write Graph					

I I				1		
	sheet No in EPAD, Show all calculation in EPAD, and diagram in					
	Graph sheet)					
3A	Prove that in a pair of gears are in mesh, the velocity of sliding is	2	4	1	2	L3
	proportional to the distance of the point of contact from the pitch point					
3B	A punching press is required to punch 40 mm dia. holes in a plate of	3	3	2	3	L4
	15 mm thick at the rate of 30 holes per minute. It requires 6 Nm of					
	energy per mm ² of sheared area. If the punching takes 1/10 th of second					
	and the rpm of the flywheel varies from 160 to 140 rpm, determine the					
	mass of the flywheel having radius of gyration of 1 meter.					
3C	A shaft carries four masses 'A', 'B', 'C' and 'D', 200, 300, 240 and	5	3	3	2,3	L4
	360 kg respectively, revolving at radii 90, 70, 100, 120 mm					
	respectively. The distance from the plane A are 270 mm, 420mm and					
	720 mm respectively. Angle between the crank 'A' and 'B' is 45					
	degree, 'B' and 'C' is 75 degree, and 'C' and 'D' is 130 degree.					
	Balancing masses are placed 120 mm and 100 mm from 'D' and 'A'					
	respectively. The distance between them being 500 mm. Find the					
	balancing masses and their angular position if they are placed at a					
	radius of 100mm. (Use Graphical Method, Write Graph sheet No in					
	EPAD, Show all calculation in EPAD, and diagram in Graph sheet)					
4A	In case of Cam, Differentiate between i) base circle and prime circle	2	5	1	1	L2
	ii) trace point and pitch point					
4B	In a four bar kinematic chain, link PQ=8cm, PS=3cm, RS=12cm and	3	1	2	2	L3
	QR=10cm. Does it satisfies Grashof's law?? Find all the inversions of					
	this kinematic chain.					
4C	In an Epicyclic gear train, the internal wheels A and B, and the	5	4	3	4	L4
	compound wheels C and D rotate independently about axis O. The					
	wheels E and F rotate on pins fixed to the arm G. E gears with A and					
	C and F gears with B and D. All wheels have the same module and					
	number of teeth are $T_A = 64$; $T_B = 62$; $T_E=T_F=18$.					
	a) Sketch the arrangement					
	b) If arm G makes 100 rpm clockwise and A is fixed, find speed of B					
	c) If arm G makes 100 rpm clockwise and wheel A makes 10 rpm					
	counter clockwise, find the speed of wheel B.					
5A	A Cam with 30 mm minimum radius is rotating clockwise at a uniform	2	5	2	2	L4
	speed of 800 rpm and has to give the motion to the roller follower as					
	defined below.					
	Follower to move outward through 30 mm during 120 degree of Cam					
	rotation with uniform acceleration and deceleration motion					
	Dwell for the next 30 degree					
	Follower to return to its starting position during the next 90 degree					
	with SHM					
	Dwell for the remaining period.					
	If the roller diameter is 15 mm, calculate maximum velocity and					
	acceleration during ascent and descent.					
	according and a soont and account.					

5B	An epicyclic gear train consists of an arm and two gears A and B	3	4	2	3	L4
	having 32 and 48 teeth respectively. The arm rotates about the centre					
	of the gear A at a speed of 120 rpm counter clockwise. Determine the					
	speed of the gear B if i) the gear A is fixed and ii) the gear A revolves					
	at 240 rpm clockwise instead of being fixed.					
5C	A Cam with 3 cm as minimum radius is rotating clockwise at a	5	5	3	4	L4
	uniform speed of 1200 rpm and has to give the motion to the knife					
	edge follower as defined below.					
	Follower to move outward through 3cm during 120 degree of Cam					
	rotation with SHM					
	Dwell for the next 60 degree					
	Follower to return to its starting position during the next 90 degree					
	with uniform acceleration and deceleration motion					
	Dwell for the remaining period. Draw the Cam profile.					

 $\label{eq:L1-Remembering, L2-Understanding, L3-Applying, L4-Analyzing, L5-Evaluating, L6-Creating$