,pReg. No.



# MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL

(A constituent unit of MAHE, Manipal)

# VI SEMESTER B.TECH. (AERONAUTICAL ENGINEERING)

## END SEMESTER EXAMINATIONS, MAY 2024

## **HIGH SPEED AERODYNAMICS [AAE 4083]**

REVISED CREDIT SYSTEM

Time: 3 Hours

### Date: 06 May 2024

Max. Marks: 50

### Instructions to Candidates:

- ✤ Answer ALL the questions.
- Missing data may be suitably assumed.

| Q.NO | Questions                                                                                                                                                                                                   | М    | CLO | AHEP<br>LO | BTL |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|------------|-----|
| 1A.  | Consider the following figure -1 and determine the velocity at point 8 by considering two different cases through Method of Characteristics $I = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 &$ | (05) | C02 | 1, 2, 4    | 5   |
| 1B.  | Explain the conditions and procedures to obtain hypersonic small disturbance equations                                                                                                                      | (03) | CO2 | 1, 2       | 3   |
| 1C.  | Define self-similar solutions and mention how it is different compared to the hypersonic boundary layer theory                                                                                              | (02) | CO1 | 1, 2       | 2   |

| 2A. | <ul> <li>Consider a flat plate at angle of attack 10° with M=11 at standard atmospheric conditions. Calculate the lift and the drag of the plate by using <ul> <li>a) Exact oblique shock relations</li> <li>b) Modified Newtonian</li> <li>c) Straight Newtonian</li> <li>d) Compare the above three results</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (05) | C03 | 1, 2, 4        | 3 |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|----------------|---|
| 28. | <ul> <li>Evaluate the following types of hypersonic wind tunnels with diagram</li> <li>a) Gas dynamic laser</li> <li>b) Shock tunnel</li> <li>c) Arc tunnel</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (03) | CO4 | 3, 4, 5,<br>12 | 3 |
| 2C. | Identify the parameters, which influence the transitions<br>Reynolds number in viscous hypersonic flows.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (02) | CO2 | 1, 2           | 2 |
| 3A. | Consider a flat plate at zero angle of attack in an airflow at standard sea level conditions. The chord length of the plate is 1.8m and platform area is $32m^2$ . Assume the wall temperature is the adiabatic wall temperature ( $T_{aw}$ ) a laminar flow over the surface and the total friction drag is caused by shear stress acting on both the top and bottom surfaces. If then calculate:<br>a) The local shear stress on the plate at the location of 0.3m from the leading edge when the free stream velocity is $3010 \text{ m/s.}$ ( $C_f(\text{Re})^{0.5}$ = 0.46)<br>b) The skin friction drag for the whole plate<br>c) The local heat- transfer rate at the quarter-chord location (assume with a constant wall temperature $(T_W=500K)(C_H(\text{Re})^{0.5}=0.28)$ | (05) | C05 | 1, 2, 4        | 4 |
| 3B. | Explain shock expansion prediction method and also mention why it is more accurate for hypersonic flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (03) | CO3 | 1, 2, 4        | 3 |
| 3C. | Explain the procedures of shooting technique in hypersonic self-similar solutions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (02) | CO5 | 1, 2, 4        | 3 |
| 4A. | Consider a flat plate at zero angle of attack in an airflow at standard sea level conditions and the chord length of the plate is 2m with $42m^2$ planform area.<br>Calculate the shear stress by using reference temperature method. Assume $(T_w=T_{aw}=6280K, T_e=T_{\infty}, M_e=M_{\infty}, u_e=4500m/s)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (05) | CO5 | 1, 2, 4        | 4 |
| 4B. | Evaluate the accuracy level hypersonic prediction methods<br>like Newtonian, Modified Newtonian and Newtonian-<br>Buseman.<br>Also, make conclusion about which method is preferable for<br>a blunt nose shape body.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (03) | CO3 | 1, 2, 4        | 3 |
| 4C. | What is the application of recovery factor in heat transfer calculations in viscous hypersonic flow?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (02) | CO2 | 1, 2           | 3 |

| 5A. | Elaborate with diagrams the shock-shock interactions and<br>the shock wave – boundary layer interactions in viscous<br>hypersonic flows | (05) | CO5 | 3, 4    | 4 |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------|------|-----|---------|---|
| 5B. | Analyze the difference between strong and weak interactions in hypersonic viscous interactions.                                         | (03) | CO2 | 1, 2, 4 | 4 |
| 5C. | Explain how the nose radius influence the aerodynamic heating on the surface of a hypersonic vehicle                                    | (02) | CO5 | 1, 2, 4 | 3 |