DEPARTMENT OF BIOTECHNOLOGY

VI SEMESTER B.TECH. (BIOTECHNOLOGY) END SEMESTER EXAMINATIONS, APRIL/MAY 2024

SUBJECT: Genetic Engineering [BIO 2223]

(Date: 09-05-2024 Time: 2:30 PM - 5:30 PM)

Time: 3 Hours MAX. MARKS: 50

Instructions to Candidates:

- Answer ALL the questions.
- ❖ Any data not provided may be suitably assumed.

Q.	Question	М	CLO	AHEP4	BL
No				LO	
1A	Explain why the promoter in general is rich in adenine (A) and thymine (T) bases?	2	1		2
1B	Why is biochemical purification of one gene away from the other genes in a cell more challenging than biochemical purification of one protein away from the other protein in a cell?	3	1		3
1C	How would you express the functional human P53 gene in a bacterial host? Note: The protein P53 is a polypeptide made up of chain A, B and C. During translation a single chain is produced and then undergoes a peptidolytic cleavage (post translational modification) to yield chain A, B & C and form a mature and functional protein.	5	1		4
2A	A gene of 2kb length into a vector of 3kb to make a GST fusion protein. The gene is being inserted at the <i>Eco</i> RI site and the insert has a <i>Hin</i> dIII site 500bp downstream of the first codon. You are screening for the clone with the correct orientation by restriction digestion of the plasmid using <i>Hin</i> dIII plus <i>Bam</i> HI (H+B) and <i>Hin</i> dIII plus <i>Pst</i> I (H+P). The map of the relevant region of the vector is shown below:	3	2		4

	(A constituent unit of MAHE, N	Aanipal)		ı		I	
	A B	С					
	H+B H+P H+B H+P H	I+B: H+P H+B	H+P				
	<u>* </u>	_ _	.				
	⁴ ₃		1 1				
	2 —						
	1.5	— <u> </u> _					
	1 —		1				
	500						
	Given above is the pattern following res	•	•				
	isolated from four independent clones	•					
	plasmids shown above represents orientation?	the clone in	the correct				
	onentation:						
2B	A gene encoding for protein X was clo	•		3	2		4
	under the T7 RNA polymerase promotion were induced by the addition of 1 mM		•				
	were lysed and fractionated into insi						
	supernatant by centrifugation. Protein 2						
	bodies. Discuss the strategies would y	ou use to exp	ress protein X				
	in the cell-free supernatant?						
2C	The plasmid pTR as a vector for incorpora	ting foreign DN	A into <i>E. coli</i> is	4	2		4
	used for cloning purpose. The plasmid man	ap shows the l	ocations of the				
	restriction sites of four different restriction	n endonucleases	s, as well as the				
	restriction sites of four different restriction <i>endonucleases</i> , as well as the ORI and a kanamycin-resistance gene (kan ^r) is given. The restriction cleaving sites for the enzymes are shown. Choose the best set of						
		wn. Choose th	ne best set of				
	restriction enzymes from the table? Justify						
	Plasmid Map Recognition So	equences					
	Pstl	First choice	Second				
	Hpall		choice				
		11 11					
	<i>p</i> TR H _{pall} ←	Hpall	Hpall				
	\ \ \	<i>Bgl</i> II	<i>Bgl</i> II				
	Haelli						
	ORI Bġlii Bg/ii -A [↓] C-A-T-C-T-	HaeIII	Haelll				
	-T-G-T-A-G-A-	PstII	PstII				
	Haelli-G-G [*] C-C- -C-C-G-G-						
	Hpall -C-C-G-G- -G-G-C-C-						
1	↑						
	Pstl -C+T-G-C-A-G-						
	Pstl -C. T-G-C-A-G- -G-A-C-G-T-C-						

3A 3B	Is it possible to ligate two heterologous fragments cleaved with SseBI and Stul? Can the ligated DNA fragments be cleaved again					5	3	4
36	SseBl and Stand Stand Standard		ed DNA fragme r answer. f SseBI- AGG/	ents be cleaved		o	3	4
3C	List out the enzymes required for the following: I. Removal of phosphate group II. Cleavage of DNA III. Addition of single stranded regions in double stranded DNA. IV. Synthesizing cDNA and DNA for hybridization purposes					2	3	2
4A	Identify the technique and provide a brief overview of the reagents used to detect genome rearrangements such as translocations, deletions, and duplications as cancer progresses					2	4	3
4B	How does dideoxy nucleotide triphosphates method work for DNA sequencing?					5	4	2
4C	size) labeled at with different digestion of the agarose electro. With the resurestriction map	The λ bacteriophage genome (double stranded, linear DNA, 48,500 b size) labeled at 5' end with a radioactive phosphorous (32P) was digested with different restriction enzymes under conditions that permits particularly digestion of the DNA. The resulting fragments were separated using agarose electrophoresis and bands were visualized by autoradiograph. With the results shown in the below table, construct the λ phage restriction map.					4	4
	Fragments 1	Apa I (bp) 48,500	48,500	8am HI (bp) 48,500				
	2	10085	35,790	41,730				

	2437	(A constituent uni	t of MAHE, Manipal)	Ī			1	1	ı
	3		26250	34500					
	4		11,930	27,920					
	5			22,345					
	6			5,505					
5A	disorder caus protein involve The dystrophi 14 kb mRNA t results from fr the dystrophin	uscular dystrophed by mutations ed in maintaining n gene spans rouranscript consist mame shift mutation mRNA resulting by of dystrophing	in the gene er membrane into ughly 2.5 Mb ar ing of 79 exons. ons that disrupt ig in a truncate	ncoding dystrop egrity in muscle nd is spliced to f The DMD phen the reading fra ed protein. Base	hin, a cells. orm a otype me of ed on	3	5		3
5B		combinations Ti plasmid vect				4	5		2
5C	uncover the genome. The the human poi. What ex co	ago, an international locations of econsortium work opulation. percentage opect two randommon? Mention can you explain tween human inderstanding of g	genetic variate orked to idented to idented for genomic nomly chosen in the types of which the comparandividuals?	tion in the hitify variations was ucleotides do people to hawariation.	uman within you ve in iation	3	5		4