

MANIPAL ACADEMY OF HIGHER EDUCATION

6th SEMESTER B.TECH END SEMESTER EXAMINATIONS, MAY 2024

DESIGN AND DRAWING OF CHEMICAL PROCESS EQUIPMENT [CHE 3251]

Marks: 50 Duration: 180 mins.

A

Answer all the questions.

Instructions to Candidates: Answer ALL questions Missing data may be suitably assumed

- 1) 4500 kg/h of ammonia vapour at 6.7 bar(a) pressure is to be cooled from 120°C to 40°C, using cooling water. The maximum supply temperature of the cooling water available is 30°C, and the outlet temperature is to be restricted to 40°C. The pressure drops over the
 - A) exchanger must not exceed 0.5 bar for the ammonia stream and 1.5 bar for the cooling water. A contractor has proposed a shell and tube exchanger with the following specification for this duty. *Shell*: E-type, shell diameter: 590 mm. Baffles: 25 per cent cut, 300 mm baffle spacing. *Tubes*: carbon steel, 15 mm ID, 19 mm OD, 2400 mm long, number of tubes are 360, thermal conductivity: 50 W/m-°C. *Tube arrangement:* 8 passes, triangular tube pitch. It is proposed to put the cooling water though the tubes.

The properties of both the fluids are given below: (4)

For cooling water, at t_{avg} = 35°C; C_{Pw} = 4.18 kJ/kg-°C, k_w = 0.61 W/m-°C, μ_w = 0.8 x 10^{-3} kg/m-s, ρ_w = 1000 kg/m³.

For ammonia vapor, at $T_{avg} = 80$ °C; $C_{PG} = 2.418$ kJ/kg-°C, $k_G = 0.0317$ W/m-°C, $\mu_G = 1.2 \times 10^{-5}$ kg/m-s, $\rho_G = 4.03$ kg/m³.

Design the proposed shell and tube heat exchanger and evaluate the overall heat transfer coefficient for the above duty

- B) Estimate the heat transfer area required and the pressure drop for the above problem. Is the calculated required area within the 30% overdesign limit in comparison with the available surface area? (4)
- C) Is the proposed design suitable for the duty of above problem? If not, recommend the suitable changes for an efficient operation of heat transfer (2)
- A horizontal 1-2 condenser is required for the complete condensation of 25000 kg/h saturated vapor of pure n-propanol (propyl alcohol) at 117°C, coming from the top of the distillation column operating at 15 psi(g). Cooling water is available at 30°C and was heated to 50°C during condensation. Tubes of 3/4 in. OD, 16 BWG, 8 ft length on

triangular pitch are available for the design. Assume the tube wall resistance is

negligible. Fouling resistance value of 0.0002 can be considered for n-propanol and water. The properties are given as:

Properties of condensate and vapor:	Properties of water at mean temperature:
Condensate conductivity, $k_L = 0.163 \text{ W/m-}^{\circ}\text{C}$,	
Condensate density, $\rho_L = 800 \text{ kg/m}^3$,	Thermal conductivity, $\mathbf{k} = 0.13 \text{ W/m-}^{\circ}\text{C}$,
Condensate viscosity, $\mu_L = 0.62 \times 10^{-3} \text{ kg/m}$	Density, $\rho = 1000 \text{ kg/m}^3$,
s,	Specific heat, $C_p = 4.18 \text{ kJ/kg-}^{\circ}\text{C}$,
Vapor density, $\rho_V = 3.84 \text{ kg/m}^3$,	Viscosity, $\mu = 0.72 \times 10^{-3} \text{ kg/m-s}$,
Vapor viscosity, $\mu_V = 10^{-5} \text{ kg/m-s}$,	

Design a horizontal 1-2 condenser for the above duty and perform the shell and tube side calculations.

- B) Evaluate the actual overall heat transfer coefficient value and pressure drop on both side for the above problem. (4)
- C) Is the design acceptable for the above duty? if not, recommend the possible changes. (2)

It is required to concentrate a dilute solution of NaOH from 8 wt% to 45 wt% in a

- forward feed triple effect evaporator. The total evaporation rate is 8000 kg water per hour. The feed is entered at 60°C and a vacuum of 0.85 bar(a) is maintained in last effect. A saturated steam is available at 5 bar(a). The overall heat transfer coefficients are 5000, 3400 and 2400 W/m²°C for the first, second and third effect, respectively. The specific heat of concentrated solution in feed and all other streams can be considered as 3.5 kJ/kg°C. The latent heat data should be obtained from Steam table. Assume that the boiling point elevation is negligible. Design a triple effect evaporator and determine the area of evaporator if the areas of calandrias are equal.
 - B) Evaluate the steam economy of the evaporator for the above problem. (3)
 - C) Determine the total capacity of the designed evaporator in the above problem (2)
- A saturated vapor feed mixture containing 35% benzene, 35% toluene and 30% cumene (all mole %) is to be fractionated at a rate of 100 kmol/h to recover 98% benzene in distillate and 98.5% toluene in bottom product. Constant molar flow rate and ideal solution behaviour may be assumed. The column top temperature is 80.5°C and bottom temperature is 124°C. Also, the vapor pressure (mm Hg) as a function of Temperature (K) of all three components are given as:

3)

For Benzene; [$\ln P^{\circ} (mmHg) = 15.9037 - 2789.01/(220.79 + T (K))$]

For Toluene; $[\ln P^{\circ} (mmHg) = 16.005 - 3090.78/(219.14 + T (K))]$

For Cumene; $[\ln P^{\circ} (mmHg) = 17.9232 - 4802/T(K)]$

Estimate the composition of distillate and bottom stream

- Determine the minimum number of stages required and minimum reflux ratio for the B) (4) above problem.
- For the above problem, evaluate the number of ideal stages required and locate the feed C) tray for this multicomponent distillation system (3)
- A new pressure vessel of 3 m OD and 8.5 m of effective length is to be operated at 0.06 5) MN/m². Flat heads are placed at both end of the vessel. Allowable stress and modulus of elasticity for material used are 90 MN/m^2 and 2.1 x 10^5 MN/m^2 , respectively. (4) Determine the required thickness of shell without stiffeners. A)

 - Determine the standard thickness of shell if stiffeners are used (with 0.8 m spacing). B) (4)
 - Is the calculated thickness safe against plastic deformation in both the cases? If not, then C) (2) recommend the changes.

----End----