## **Question Paper**

Exam Date & Time: 06-May-2024 (02:30 PM - 05:30 PM)



## MANIPAL ACADEMY OF HIGHER EDUCATION

VI SEMESTER B.TECH END SEMESTER EXAMINATIONS, APRIL 2024

## **OIL AND GAS RESERVOIR ENGINEERING [CHE 4052]**

Marks: 50 Duration: 180 mins.

A

## Answer all the questions.

Instructions to Candidates: Answer ALL questions Missing data may be suitably assumed

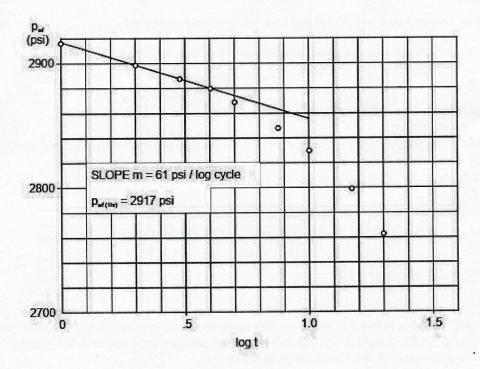
- Analyze the influence of porosity and permeability on fluid flow within oil & gas reservoirs.
   A)
  - B) Distinguish between flash and differential expansion. (3)
  - C) List the traps based on structural classification and explain any two traps along with neat sketch. (4)
- 2) Outline the various methods used to calculate z-factor and explain any two methods. (4)
  - actor and explain any two methods.
  - A)
    B) Construct the PT behaviour of the following reservoir fluids (a) Black Oil and (b) Wet Gas. (4)
  - C) Derive  $E = 35.37 \frac{p}{ZT}$  (2)
- The ONGC Mehsana field is a combination-drive reservoir. The current reservoir pressure is 2500 (3) psia. Volume of bulk oil zone is 100,000 ac-ft and that of gas zone is 30,000 ac-ft. The reservoir production data and PVT information are given below:

|                       | Pressure, psia | B <sub>o</sub> ,<br>rb/stb | R <sub>s</sub> ,<br>scf/stb | N <sub>P</sub> ,<br>MMstb | G <sub>P</sub> ,<br>MMMscf | B <sub>g</sub> ,<br>rb/scf |   |   | W <sub>p</sub> ,<br>MMrb | C <sub>f</sub> , |
|-----------------------|----------------|----------------------------|-----------------------------|---------------------------|----------------------------|----------------------------|---|---|--------------------------|------------------|
| Initial<br>Conditions | 5000           | 1.35                       | 600                         | 0                         | 0                          | .0011                      | 1 | 0 | 0                        | 0                |
| Current<br>Conditions | 2500           | 1.33                       | 500                         | 5                         | 5.5                        | .0015                      | 1 | 5 | 0.5                      | 0                |

Estimate the initial oil in place "N".

- B) Derive the Schilthuis material balance and list the assumptions clearly. (4)
- C) Propose an action plan for a reservoir engineer to address a crude oil spill event in the ocean. (3)
- 4) Derive the basic radial flow equation or well diffusivity equation. List all the assumptions and notations clearly. (4)

A)


B) Distinguish between pressure build-up test and pressure draw down test. (3)

Page 1 of 2

- C) Derive Darcy's law using fluid potential and asses the importance of the Klinkenberg effect. (3)
- 5) Compare the steps involved in (a) single carbon number analysis (b) SARA analysis. (2)
  - A)
  - B) Analyse the role of the CO<sub>2</sub> injection in the reservoir along with any one CQ EOR technique with neat sketch. (4)
  - C) A well is tested by producing it at a constant rate of 1500 stb/d for a period of 100 hours. It is suspected, from seismic and geological evidence, that the well is draining an isolated reservoir block which has approximately a 2:1 rectangular geometrical shape and the extended drawdown test is intended to confirm this. Estimate the effective permeability and skin factor of the well.

The following reservoir data and bottom-hole pressures recorded plot is available:

h=40 ft,  $r_w=0.33$  ft, ø= 0.3, c = 15X 10^-6/psi,  $\rlap/ L=3$  cp, y=1.781 and  $B_0=1.20$  rb/stb



----End-----