Marks: 50

Duration: 180 mins.

Exam Date & Time: 04-May-2024 (02:30 PM - 05:30 PM)

MANIPAL ACADEMY OF HIGHER EDUCATION

MIT MPL - BTech VI Semester Chemical Engineering - End Semester Examination - Apr/May 2024

PROCESS DYNAMICS AND CONTROL [CHE 3252]

	Descriptive	
Answer al	If the questions.	
* Assume * Write ne	all questions. the missing data suitably. satly and legibly. table examples wherever necessary.	
1)	List the selection criteria required for a sensor used in a process control loop.	(2)
2)	Brief about the properties of a transfer function.	(3)
)	Solve and find y(t) for the following equation.	
	$\frac{d^2y}{dt^2} + 4y = 0$ y(0) = 1, y'(0) = 3	(5)
	y(0) = 1, y'(0) = 3	
)	Establish the time response for unit step change in input for a first order process described by the transfer function.	
	$G(s) = \frac{1}{\tau_p s + 1}$	(2)
)	A thermometer is placed in a water bath kept at 50 °C and allowed to reach equilibrium. At time $t=0$, it is quickly transferred to another bath kept at 60 °C, kept there for 12 seconds and returned to the bath at 50 °C. What will be the temperature indicated in thermometer at 5 seconds, 10 seconds and 15 seconds? The time constant is 7.5 seconds.	(3)
)	Discuss the characteristics of underdamped response and plot the graph of overshoot % versus damping factor.	(5)
)	State the need of valve positioner in a control valve.	(2)
)	Compare proportional, integral and derivative action of a controller.	(3)

9) Consider the general closed-loop block diagram with

$$G_c(s) = 1.6$$
; $G_p(s) = \frac{5}{(s+1)(2s+1)}$; $G_f(s) = G_m(s) = 1$

Suppose that the system is subject to a step change in set point with the input of magnitude 0.1. Determine:

(5)

- a) The maximum value of the response.
- b) The period of the oscillation.
- What conclusion can be drawn if two elements in the first column of the Routh array are negative? Explain with an example.

(2)

Write the design procedure for tuning of a controller by process reaction curve method. 11)

(3)

12) Find value of K for the closed loop system to have a stable response.

13) Write a short note on feedforward control system.

(2)

14) Discuss the advantages and disadvantages of a cascade control system.

(3)

15)

$$G_{OL}(s) = \frac{K_c}{(5s+1)}e^{-2s}$$

For the given open loop transfer function

Calculate the following for a stable closed loop response,

a. Maximum controller gain

(5)

- b. Controller gain, if gain margin of 1.75 is used
- c. Controller gain, if phase margin of 45 ° is used

If the dead time increases by 50 %, comment on the stability with controller gain obtained using gain margin and phase margin.

-End---