Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY

MANIPAL (A constituent unit of MAHE, Manipal)

VI SEMESTER B.TECH. (CIVIL ENGINEERING) END SEMESTER EXAMINATIONS

MAY 2024

SUBJECT: APPLIED SOIL ENGINEERING [CIE 3251]

Date of Exam: 13/05/2024

Time of Exam: 2.30 - 5.30pm

Max. Marks: 50

Instructions to Candidates:

Answer ALL the questions & missing data may be suitably assumed

Q.	QUESTION			MARKS	CO	BL	
1A	A 6.5 m high retaining wall with a smooth vertical back retains two layered soil as shown in figure. Compute the magnitude and point of application of Rankine's active earth pressure when the water table is 3.5 m below the ground level.					CO2	4
	5 kN/m ² \downarrow \downarrow \downarrow \downarrow GL \uparrow c=18 kN/m ² \uparrow 3.0 m Φ =26° 4.0 m γ = 17.5 kN/m ³ \downarrow WT 3.5 m c=0, Φ =34°						
18	$\gamma = 18.0 \text{ kN/m}^3$ $\gamma_{\text{sat}} = 19.5 \text{ kN/m}^3$ A retaining wall of 7.5 m high supports three layered backfill with the					CO2	4
	following properties: Depth Cohesion (kN/m ²) Angle of Internal friction (°) Unit weight of soil (kN/m ³)						
	0-2.5 m	0	25	16			
	2.5 m to 5 m	10	0	19			
	5 m to 7.5 m	8	32	18			
	Analyze and plot Rankine's active earth pressure diagram.						
1C	Explain at-rest earth pressure with an example. What is the approximate maximum depth of an unsupported vertical cut that can be made in a saturated clay with γ =20.5 kN/m ³ and an unconfined compressive strength 60 kN/m ² .			2	CO2	3	
2A	An embankment of 8m height is made in soil with $c=12kN/m^2$, $\varphi=32^{\circ}$			6	CO3	4	

MANIPAL INSTITUTE OF TECHNOLOGY

MANIPAL (A constituent unit of MAHE, Manipal)

	and $\gamma = 18$ kN/m ³ . The sides of the cut make an angle of 40° with the horizontal. Estimate the factor of safety of a trial slip circle with a radius as 12m and $\delta = 72^{\circ}$ by plotting the slope and using method of slices. Take			
	6 slices of 2m width from the toe and one slice of the remaining width. (Scale: use $1 \text{ am} - 2\text{m}$)			
28	A canal is to be excavated to a depth of 4m below ground level, in soil having cohesion 10 kN/m ² , angle of internal friction 15°, voids ratio 0.80, and specific gravity 2.70. The slope of the bank is 45°. Determine the factor of safety with respect to cohesion when the canal runs full. What will be the factor of safety, in case of sudden draw down	2	CO3	3
	condition?			
2C	Derive an expression for the factor of safety of an infinite slope in a submerged cohesionless soil.	2	CO3	2
3A	Determine the depth at which a circular footing of 2m diameter is to be founded if it must carry a safe load of 3450kN with a factor of safety of 3. The foundation soil has $\Phi = 37^{\circ}$, $c = 12$ kN/m ² and $\gamma = 18.4$ kN/m ³ , $\gamma_{sat} = 19.5$ kN/m ³ . Use Terzaghi's Method, general shear failure and water table at large depth below the ground level.	3	CO4	3
3B	For 1.8m depth of foundation with water table at foundation level, determine the gross safe load that can be carried by a square footing of size $1.8m \times 1.8m$ if the load is inclined at an angle of 12° to vertical. Take factor of safety as 2, use IS code method and assume local shear failure. Soil Properties: Φ = 34.98°, c = 7kN/m ² and γ_{sat} = 21kN/m ³ , γ = 19kN/m ³ .	4	CO4	3
3 C	Explain the plate load test used to determine the bearing capacity of soil in field.	3	CO4	2
4A	A square group of 9 piles are installed in a deposit of 24 m (length of pile) thick stiff clay overlaying rock. The piles are 0.8 m in diameter and spaced at 1.1 m c/c in the group. The undrained shear strength of clay at the pile base level is 180 kN/m^2 and the average value of undrained shear strength over the depth of the pile is 110 kN/m^2 . The adhesion factor m is 0.4. Taking factor of safety as 3 against shear failure, compute the safe pile group load carrying capacity with consideration to individual and block failure.	4	CO5	4
4 B	A square concrete pile of size 300mm, is driven into a deep deposit of uniform clay. Laboratory unconfined compression tests on undisturbed samples indicated an average $q_u = 106 \text{ kN/m}^2$. Compute the length of the pile to be provided such that the ultimate load capacity of the pile is 900kN. Take m = 0.8.		CO5	4
4 C	Differentiate between precast piles and cast in situ piles.	3	CO5	2
5A	Compute the settlement of the square group of piles assuming the load to be transferred at 2/3 length of the pile for the following data. Q = 3800kN, diameter of pile d = 0.4m, spacing s= 3d, no:of piles n =25, Length of pile L = 12m, Liquid limit w _L = 55%, γ = 17.5 kN/m ³ , e _o =0.95. Hard rock is 23m below ground level. The bottom of the pile cap is located at the ground surface. Assume three layers for settlement	5	CO5	4

MANIPAL INSTITUTE OF TECHNOLOGY

MANIPAL (A constituent unit of MAHE, Manipal)

	calculation.			
5B	Discuss the standard penetration test in soil exploration.		CO1	2
5C	A strip footing 1.2m wide is located at a depth of 1.6m in a non cohesive soil deposit, for which corrected N value is 23. Water table is located at 2m below ground level. Determine allowable pressure in soil if γ =17.6kN/m ³ and permissible settlement is 25mm using Teng's equation.		CO4	3