MANIPAL INSTITUTE OF TECHNOLOGY

(A constituent unit of MAHE, Manipal)

MANIPAL INSTITUTE OF TECHNOLOGY

SIXTH SEMESTER B.TECH (CIVIL ENGINEERING)

END SEMESTER EXAMINATION, MAY 2024

DESIGN OF REINFORCED CONCRETE STRUCTURES (CIE 4063)

(06 - 05 - 2024)

TIME: 3 HRS.

MAX. MARKS: 50

Note: 1. Answer all questions.

2. Any missing data may be suitably assumed.

3. Use of IS 456:2000 code is permitted.

Q.	QUESTION	MARKS	CO	BL
1A	Explain different types of footings with neat sketch	4	1	2
18	The roof of a hall is to be supported on single bay and single storey portal frames spaced at 4 m c/c. The data is given below. Height of the portal frames = $3.5m$ Bay width = $6m$ Thickness of the slab = $125mm$ Effective cover to the reinforcement = $25mm$ Live load on the roof = 2.5 kN/m^2 Grade of concrete and steel = M25 and Fe415	6	4	4
	Design the interior slab, check for shear and deflection not required	0		
2A	Details of an interior panel of a flat slab with drop is given below: Panel size = $6m \times 6m$. Size of drops = $3m \times 3m$ Live load and floor finishes on the slab = $3kN/m^2$ and $0.8kN/m^2$ respectively Size of the supported columns = $400 \text{ mm} \times 400 \text{ mm}$ Width of column strip along longer and shorter spans = $3m$ Thickness of solid slab and drops provided = $250mm$ and $100mm$ respectively Effective cover for slab = $30mm$ Grade of concrete and steel = M25 and Fe415 Check the slab for shear at critical locations and calculate the reinforcement along the shorter direction in column strip.	8	2	3
2B	Explain the technical differences between bunker and silo.	2	5	2
3	Details of a cantilever type retaining wall (with sloping face towards the earth retained) and related data is given below:	10	3	3

	Height of the wall $= 5 \text{ m}$			
	Angle of repose = 32°			
	Coefficient of friction between concrete and soil $= 0.5$			
	Density of soil = 16.5 kN/m^3			
	Thickness of stem varies from 200mm at the top to 450mm at the junction			
	of stem and base slab			
	Thickness and width of base slab = 450 mm and 3.2 m respectively			
	Length of toe slab = $0.9m$			
	Effective cover for all elements $= 50$ mm			
	SBC of soil = 180kN/m^2			
	Grade of concrete and steel = $M25$ and Fe415			
	Examine the stability of the retaining wall for overturning, sliding, net			
	upward earth pressure at the base and design the stem with shear check.			
4	Details of slab and beam type combined footing provided for 2 columns	10	3	4
	are given below:			
	Service load on column 1 of size 400mm × 400mm = 600kN			
	Service load on column 2 of size 500mm × 500mm = 900kN			
	SBC of soil = 200kN/m^2			
	Spacing of columns = 4 m c/c			
	Effective cover $= 50$ mm			
	Grade of concrete and steel = $M25$ and $Fe415$			
	The column 1 is flushed with the property line			
	Design the footing slab and beam (shear reinforcement not required for			
	beam)			
5 A	A $(4m \times 4m)$ square bunker with a height of 5m, and hopper bottom of	5	5	3
	height 1.2m and opening $(0.5m \times 0.5m)$ is proposed to store food grains of			
	density 6.5 kN/m ^{3} and angle of repose 22 ^{0} , assume surcharge angle equal			
	to angle of repose.			
	Thickness of vertical wall and hopper bottom wall = 200mm			
	Effective cover = 30 mm			
	Determine the total capacity of the bunker and reinforcement for hopper			
	bottom required to resist direct tension using Fe415 steel.			
5B	A cylindrical silo has an internal diameter of 5m and 20m deep (cylindrical	5	5	3
	portion) with a conical hopper bottom. The material stored is wheat with a			
	density of 8kN/m ³ . The coefficient of friction between wall and material is			
	0.44. The ratio of horizontal to vertical pressure intensity is 0.4. Calculate			
	the area of steel required in the side walls for direct tension if Fe415 steel,			
	use Janseen's Theory.			