MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL (A constituent unit of MAHE, Manipal)

MANIPAL INSTITUTE OF TECHNOLOGY VI SEMESTER B.TECH. (CIVIL ENGINEERING) END SEMESTER (Makeup) EXAMINATION, APRIL-MAY 2024 RAILWAY AND AIRPORT ENGINEERING (CIE 3253) (-05-2024)

TIME: 3 HRS.

Note: 1. Answer all questions.

- 2. Any missing data may be suitably assumed.
- 3. Use of Formula book is permitted

Q.	QUESTION	MARKS	CO	BL
	Discuss the following in details a) Detensiting signal b) Somerhore signal a)	5	5	2
IA	A dyance storter signal d) Pouting signal a) Pilot gyard system	5	5	4
	Advance starter signar, d) Kouting signar, e) Phot guard system.			
1R	Describe the hauling capacity of a locomotive and compare the tractive effort	3	2	5
110	of steam, diesel, and electric locomotives	5	4	5
1C	Discuss the following terms related to the airport: i) Runway orientation; ii)	2	4	2
	Crosswind			
			2	_
2A	1) Discuss the concept of negative super elevation with the help of a neat	5	3	5
	11) If an 8' curve track diverges from a main curve of 5' in the opposite			
	direction in the layout of a B.G. yard, Evaluate superelevation and speed on			
	the branch line if the maximum speed permitted on the main line is 45kmph.			
2 B	Calculate the maximum permissible load that a BG locomotive with three pairs	3	2	4
	of driving wheels bearing an axle load of 22 tonnes each can pull on a straight			
	level track at a speed of 80kmph			
2C	Discuss the various surveys carried out for an airport site selection.	2	4	2
31	With the halp of a next sketch, illustrate the three controls that halp in the	5	1	1
JA	with the help of a heat sketch, indstrate the three controls that help in the movement of an aircraft	5	1	-
	novement of an anciart.			
3B	Discuss the following terms:	3	3	2
	a) Marshalling yards b) Class A Block station c) Railway alignment			
3 C	Discuss the wind direction indicator with a neat diagram.	2	4	2

MAX. MARKS: 50

4 A	Following is the average wind data for 10 years when wind intensity is above							5	4	5
	6 km/h. An airport is to be designed for two runways Evaluate the best runway									
	orientation and assess total wind coverage.									
		Duration of wind in percent								
		sector	True	6 4-25		50-75				
	sector		azimuth	kmph	25-50 kmph	kmph				
		N	0.00	5.3	4.2	0.2				
		NNE	22.50	6.4	8.7	0.6				
		NE	45.00	3.6	3.2	0.2				
		ENE	67.50	1.7	1.3	0				
		E	90.00	1	1.4	0				
		ESE	112.50	4.3	1.1	0				
		SE	135.00	3.5	2.3	0.2				
		SSE	157.50	2.3	1.8	0				
		S	180.00	4.9	3.6	0.4				
		SSW	202.50	4.8	3.4	0.4				
		SW	225.00	5.8	5.9	0.6				
		WSW	247.50	2.6	1.4	0				
		W	270.00	0.8	1.3	0				
		WNW	292.50	1	1.2	0				
		NW	315.00	2.3	1.1	0				
		NNW	337.50	1.5	1.8	0.2				
4B	Discuss the requirements of ballasts.							3	1	2
4 C	Discuss the following terms with respect to aircraft parking configuration;							2	4	2
	i) Nose-in and Angled nose-in; ii) Nose-out and angled nose-out									
5 4		Ectimata	the estual	langth of mun	way if the long	th required for	r landing and	5	1	5
ЗA	-	Estimate	under stand	lengui or ruiv	ric conditions a	ui iequiieu io	re 2000m and	5	4	5
		1700m r	espectively	The elevation	of the airport s	ite is 200m al	hove sea level			
	and the airport reference temperature is 20° C. Effective runway gradient may									
	1	be taken	as 0.5 %.	II		j	8			
5B	With a neat diagram, discuss the requirements of basic runway length for the various cases.							3	4	2
5C	In the gradient operation for the runway, it is proposed to have a rising gradient							2	4	4
50	of 0.4% meeting a falling gradient of 0.6% There is again an upgrade of							-	-	-
	0.3%. Determine the length of the vertical curve and distance between the									
	grade changes of the runway as per FAA. Assume that the runway is required									
		to handle								