MANIPAL INSTITUTE OF TECHNOLOGY

(A constituent unit of MAHE, Manipal)

MANIPAL INSTITUTE OF TECHNOLOGY VI SEMESTER B.TECH. (CIVIL ENGINEERING) END SEMESTER (Regular) EXAMINATION, APRIL-MAY 2024 RAILWAY AND AIRPORT ENGINEERING (CIE 3253) (02 - 05 - 2024)

TIME: 3 HRS.

Note: 1. Answer all questions.

2. Any missing data may be suitably assumed.

3. Use of Formula book is permitted

Q.	QUESTION	MARKS	CO	BL
NO 1 A	Illustrate the Automatic Block System and its working procedure with the	5	5	2
IA	help of a neat diagram. Discuss the advantages of this system over the	5	5	4
	Absolute Block System			
1R	Estimate the steepest gradient that a train of 20 wagons and a locomotive can	3	2	5
ID	regotiate given the following data:	5	2	3
	negotiate given the following data.			
	• weight of each wagon = 20 tonnes,			
	• weight of locomotive = 150 tonnes,			
	• tractive effort of locomotive =15 tonnes,			
	 rolling resistance of locomotive = 3kg/tonnes, 			
	 rolling resistance of wagon = 2.5kg/tonnes, 			
	• speed of train = 60 kmph.			
1C	Describe the following: i) wind coverage, ii) wind rose	2	4	2
2A	Explain the objectives of providing super elevation in railway tracks. With a	5	3	3
	neat sketch, illustrate the relationship of superelevation, gauge, speed, and			
	radius of the curve.			
2B	Calculate the maximum permissible train load that can be pulled by a	3	2	4
	locomotive with four pairs of driving wheels with an axle load of 28.42 tonnes			
	each on a BG track with a ruling gradient of 1 in 200 and a maximum curvature			
	of 3 degrees, traveling at a speed of 48.3kmph. Take the coefficient of friction			
	to be 0.2.			
2C	Discuss the factors to be considered in the site selection for an airport.	2	4	2
3A	With the help of a neat sketch, construct the lift and drag forces acting on the	5	1	6
	wing of an aircraft.			
3B	Discuss the terms given below related to railway engineering:	3	1	2
	a) Fouling mark; b) Scotch block; c) Triangle			
3C	Discuss the following lighting systems provided in an airport:	2	4	2
	i) Approach lighting ii) Threshold lighting in an airport.	_	•	_

MAX. MARKS: 50

4 A	Following is the average wind data for 10 years when wind intensity is above						5	4	5
	6 km/h. An airport is to be designed for two runways. Evaluate the best runway								
	orientatio	orientation and assess the total wind coverage.							
			Duration of wind in percent						
	sector	True azimuth	6.4-25 kmph	25-50 kmph	50-75 kmph				
	Ν	0.00	4.5	1.3	0.1				
	NNE	22.50	3.3	0.8	0				
	NE	45.00	1.8	0.1	0				
	ENE	67.50	2.7	0.3	0				
	Е	90.00	2	0.4	0				
	ESE	112.50	5.3	0.1	0				
	SE	135.00	6.3	3.2	0.1				
	SSE	157.50	7.4	7.7	0.3				
	S	180.00	4.6	2.2	0.1				
	SSW	202.50	2.4	0.9	0				
	SW	225.00	1.1	0.1	0				
	WSW	247.50	3.6	0.4	0				
	W	270.00	1.8	0.3	0				
	WNW	292.50	5.9	2.6	0.2				
	NW	315.00	5.8	2.4	0.2				
	NNW	337.50	6.8	4.9	0.3				
4B	Discuss the wave theory to explain the creep of rails using a neat sketch.						3	1	4
4 C	Illustrate different types of Aircraft parking systems in an airport with a neat						2	4	3
	sketch.								
5A	The runway length required for landing at sea level in standard atmospheric						5	4	5
	conditions is 3000m. The runway length required for take-off at a level site at								
	sea level in standard atmospheric conditions is 2500m. Aerodome reference								
	temperature is 24°C and aerodome elevation is 150m from MSL. If the								
	effective runway gradient is 0.5%, Evaluate the runway length to be provided.								
5B	Discuss t	the imagina	ry surfaces tha	t cause obstruct	ion to the patl	n of an aircraft	3	4	2
50	near the airport.						•	4	
5 C	meeting a falling gradient of 0.6%. There is again an upgrade of 0.6%. Design						2	4	0
	the runw								