VI Semester BTech Examination May 2024

Set No.: 02

Course name: SOFT COMPUTING PARADIGMS (CSE 4054)

Course code: CSE 4054

Q. No	Description	Mark s	Course Outcom e (1-5)	Competenc y Levels (1-6)	AHEP LO LEVEL S
1A	Using the back-propagation algorithm, find new weights for the following network [perform one iteration]. Input pattern [10, 30, 20], target output: [O1=1, O2=0], learning rate =0.1. Activation Function: Sigmoid function $I = 0.1 + 0.2 + 0.1 + 0.2 + 0.1 + 0.2 + 0.1 + 0.2 + 0.1 + 0.2 + 0.$	5	1	6	2,3
18	 Below is a diagram of a single artificial neuron (unit): x₁ x₂ w₂ w₃ w₂ w₃ w₃ Figure 1: Single unit with three inputs. The node has three inputs x = (x1; x2; x3) that receive only binary signals (either 0 or 1). (i) How many different input patterns this node can receive? What if the node had four inputs? Five? Can you give a formula that computes the number of binary input patterns for a given number of inputs? (ii) Consider the unit shown in Figure 1. Suppose that the corresponding weights to the three inputs have the following values: 	3	1	5	2,3

	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$				
1C	Explain the operations of an artificial neuron.	2	1	2	2,3
2A	Describe in detail the structure and components of a standard Radial Basis Function (RBF) network and discuss the advantages and disadvantages of RBF networks compared to multilayer perceptrons.	5	2	2	2,3,6
2B	Explain memory-based learning. How does the k-nearest Neighbor Rule function in memory-based learning, and discuss its advantage over the Nearest Neighbor Rule?	3	1	2	2,3
2C	 Consider the following fuzzy expert system for weather forecast: a and b and and b and and	2	3	5	2,3

ЗА	Explain the rank-based selection method and how it differs from the tournament selection method. Consider a genetic algorithm with a population consisting of four individuals, each characterized by a fitness value: 0.40, 0.05, 0.03, and 0.02. Employing the rank-based selection method, determine the selection probabilities for each individual.	5	4	5	2,3,6,12
3В	Describe the concept of linear crossover in real-coded genetic algorithms, along with its advantages and limitations. Calculate the values of two offspring generated using the linear crossover technique in a real-coded genetic algorithm. The parent individuals denoted as P1 and P2, have parameter values of P1=14.2 and P2=19.54, respectively. The crossover operation employs the following parameters α 1=0.2 and β 1=0.4, and α 2 =0.6 and β 2=0.7.	3	4	5	2,3,6,12
3С	Calculate the defuzzified value for the aggregated fuzzy output set depicted in the figure using the weighted average method.	2	3	5	2,3
4A	The rule base to be followed for a neuro-fuzzy system is given in the below Figure where I1 and I2 are inputs and O is the output of the controller. The neural network will consist of five layers. The input I1 has been expressed using three linguistic terms: Low (LW), Medium (M) and High(H). Similarly, the input I2 has been expressed using four linguistic terms: Very near (VN), Near(N), Far(FR), and Very Far (VFR). The output has been expressed using three linguistic terms: Slow(S), Fast(F), and Very Fast(VF). Draw a neural network that assists to design a fuzzy logic controller for a neuro-fuzzy system and explain the operation of each layer.	5	5	6	2,3,6

	$\begin{array}{c c c c c c c c c c c c c c c c c c c $				2,3,6
4B	Explain the following terms.i) Modular Neural Networksii) Neuro-Fuzzy Hybrid systems	3	5	2	2,3,0
4C	Explain the role of crossover in genetic algorithms. Describe the basic principle of matrix crossover operation in genetic algorithms.	2	4	2	2,3,6,12
5А	Consider the schematic view of an ANFIS (shown in the below figure) used for modeling a process with two inputs, l_1 and l_2 , and one output, O. The network comprises six layers. Two linguistic terms, Low (LW) and High (H), represent the first input, l_1 , while the second input, l_2 , is expressed using two linguistic terms: Small (SM) and Large (LR). The connecting weights (expressed in normalized form from 0 to 1) between the nodes of the first and second layer are denoted by the [V] matrix $I = \frac{1}{1} \int_{0}^{1} \int_{1}^{1} \int_{0}^{1} \int_{1}^{1} \int_{1}^{1} \int_{0}^{1} \int_{1}^{1} \int_{1}^$	5	5	6	2,3,6

	Moreover, the								
	corresponding to			_					
	and $V_{23}=V_{24}$, respectively. According to the first								
	order Takagi and	-		el of FLC ,	, the rules				
	can be expressed	as follo	WS						
	y ⁱ = a _i l ₁ +b _i l ₂ +c _{i,}								
	, - <u>r</u> <u>1</u> - <u>r</u> <u>2</u> - <u>r</u> <u>1</u> ,								
	where i = 1, 2, 3, 4	; a _i , b _i , c _i	are the c	oefficients	s of the rules.		1		
	The rules are given as	follows:							
	The fulles are given as	ionows.							
	Rule Number	a _i	b _i	C _i					
	1	0.2	0.3	0.10					
	2	0.2	0.4	0.11					
	3	0.3	0.3	0.13					
	4	0.3	0.4	0.14					
	The values of the	e d1 an	d d ₂ var	y in the	ranges as				
	below:								
	0.8≤ d ₁ ≤ 1.5 ; ·	4.0≤ d ₂	≤ 6.0						
	Assume the normalize	ed weight	values as	follows:					
	$[v_{11} = v_{12} v_{23} =$								
	· • 11 - • 12 • 23 -	-241	[0:0 0	··••1					
	and determine the	deviation	in predi	ction for	the training				
	scenario.								
	l ₁ = 1.1, l ₂ = 6.0	= 1.1, I ₂ = 6.0 and Output O = 2.3							
	Define Hybrid System	ns and wh	at are their	r various ty	pes?				
	Provide an in-depth ex	xplanatio	n of a spec	ific hybrid	system,		3	3 5	3 5 2
	highlighting its compo	onents and	d functioni	ing.					
С	Explain the mutation of	operation	s utilized v	within a bin	ary-coded		2	2 4	2 4 2
-	genetic algorithm.	genetic algorithm.				-			

Set by _____

(Signature)

Scrutinized by _____

(Signature)

Page___of____

* This format is to be used only for e-pad exam question paper